DevOps Labdon
442 subscribers
22 photos
1 video
1 file
591 links
👑 DevOps Labdon

حمایت مالی:
https://www.coffeete.ir/mrbardia72

ادمین:
@mrbardia72
Download Telegram
🔵 عنوان مقاله
Scalable ML with Azure, Kubernetes and KEDA: Generating Inputs with 500 Pods

🟢 خلاصه مقاله:
**
این مطالعهٔ موردی نشان می‌دهد چگونه می‌توان یک خط لولهٔ ML مقیاس‌پذیر روی Azure ساخت که با استفاده از Kubernetes و KEDA ورودی‌ها را به‌صورت رویدادمحور و تا سقف 500 پاد تولید می‌کند و سپس مدل‌ها را از طریق Azure ML آموزش، ثبت و استقرار می‌دهد. در این معماری، KEDA با پایش صف‌ها یا استریم‌ها اندازهٔ خوشه را به‌طور خودکار بالا و پایین می‌برد، هر پاد بخشی از کار را پردازش می‌کند، و خروجی‌ها در ذخیره‌سازی پایدار ذخیره می‌شوند تا Azure ML آن‌ها را برای آموزش و ارزیابی مصرف کند. استقرار مدل‌ها روی online/batch endpoints (مدیریت‌شده یا AKS) انجام می‌شود و کل فرایند با CI/CD، مانیتورینگ در Azure Monitor/Application Insights، کنترل هزینه و ملاحظات امنیتی (managed identity و شبکه خصوصی) پشتیبانی می‌گردد. نتیجه، الگویی مطمئن برای آماده‌سازی ورودی با توان انفجاری 500 پاد و MLOps استاندارد روی Azure است.

#Azure #Kubernetes #KEDA #AzureML #AKS #MLOps #Scalability #DataEngineering

🟣لینک مقاله:
https://ku.bz/0lYz58fTX


👑 @DevOps_Labdon
🔵 عنوان مقاله
How We Cut Our Azure Cloud Costs by 3×

🟢 خلاصه مقاله:
** این مطالعهٔ موردی توضیح می‌دهد چگونه در ۱۲ هفته هزینه‌های Azure را حدود سه‌برابر کاهش دادیم بدون افت کارایی یا قابلیت اطمینان. قدم‌های کلیدی: ابتدا با Azure Cost Management + Billing، برچسب‌گذاری منابع، Azure Advisor و بودجه/هشدارها، دید کامل روی هزینه ساختیم. سپس اتلاف را حذف کردیم: خاموش‌کردن VMهای بلااستفاده، پاک‌کردن دیسک‌ها و IPهای یتیم، زمان‌بندی محیط‌های غیرپروداکشن و اعمال سیاست‌ها با Azure Policy.

در گام بعد، راست‌سایز و معماری را اصلاح کردیم: انتقال سرویس‌های سبک به SKUهای کوچک‌تر یا B-series، فعال‌سازی autoscaler در AKS، افزودن Spot node pool برای بارهای بدون حالت، و بهینه‌کردن HPA. برای بارهای پایدار، Azure Reservations و Azure Savings Plans را پذیرفتیم و Azure Hybrid Benefit را اعمال کردیم. بخشی از بار را به سرویس‌های مدیریت‌شده/Serverless منتقل کردیم: Azure Functions، Event Grid، Logic Apps، Azure Service Bus، همراه با Azure CDN و Azure Cache for Redis. در لایهٔ داده، Azure SQL را راست‌سایز و autoscale را فعال کردیم و در Azure Cosmos DB از autoscale RU/s بهره گرفتیم.

در ذخیره‌سازی، با قوانین lifecycle در Blob Storage داده‌های کم‌مصرف را به Cool/Archive بردیم، نگه‌داری اسنپ‌شات‌ها را کاهش دادیم و فشرده‌سازی را فعال کردیم. در شبکه با هم‌مکانی سرویس‌ها، استفاده از Private Link و بهره‌گیری از Azure Front Door/CDN خروجی و هزینهٔ egress را پایین آوردیم. در نهایت، با داشبوردهای واحداقتصاد، بودجه/هشدار در CI/CD و سیاست‌های تگ/SKU، یک روال FinOps پایدار ساختیم.

نتیجه: کاهش تقریبی ۳× در هزینهٔ Azure با حفظ SLOها. اهرم‌های اصلی: شفافیت و حاکمیت هزینه، حذف اتلاف، راست‌سایز و autoscaling (به‌ویژه AKS + Spot)، تعهدهای قیمتی (Reservations/Savings Plans) و مهاجرت مسیرهای پرترافیک به سرویس‌های مدیریت‌شده/Serverless.

#Azure #CloudCostOptimization #FinOps #AKS #Serverless #AzureCostManagement #SpotVMs #DevOps

🟣لینک مقاله:
https://ku.bz/ZbclYbPC6


👑 @DevOps_Labdon