Python Data Science Jobs & Interviews
20.3K subscribers
188 photos
4 videos
25 files
325 links
Your go-to hub for Python and Data Science—featuring questions, answers, quizzes, and interview tips to sharpen your skills and boost your career in the data-driven world.

Admin: @Hussein_Sheikho
Download Telegram
🚀 Comprehensive Guide: How to Prepare for a Data Analyst Python Interview – 350 Most Common Interview Questions

Are you ready: https://hackmd.io/@husseinsheikho/pandas-interview

#DataAnalysis #PythonInterview #DataAnalyst #Pandas #NumPy #Matplotlib #Seaborn #SQL #DataCleaning #Visualization #MachineLearning #Statistics #InterviewPrep


✉️ Our Telegram channels: https://t.iss.one/addlist/0f6vfFbEMdAwODBk

📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
3
How can you use Seaborn to create a heatmap that visualizes the correlation matrix of a dataset, and what are the key steps involved in preprocessing the data and customizing the plot for better readability? Provide a detailed code example with explanations at an intermediate level, including handling missing values, selecting relevant columns, and adjusting the color palette and annotations.

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

# Step 1: Load a sample dataset (e.g., tips from seaborn's built-in datasets)
df = sns.load_dataset('tips')

# Step 2: Select only numeric columns for correlation analysis
numeric_df = df.select_dtypes(include=[np.number])

# Step 3: Handle missing values (if any)
numeric_df = numeric_df.dropna()

# Step 4: Compute the correlation matrix
correlation_matrix = numeric_df.corr()

# Step 5: Create a heatmap using Seaborn
plt.figure(figsize=(10, 8))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', center=0, linewidths=.5, fmt='.2f')
plt.title('Correlation Heatmap of Numeric Features in Tips Dataset')
plt.tight_layout()
plt.show()


Explanation:
- Step 1: We load a built-in dataset from Seaborn to work with.
- Step 2: Only numeric columns are selected because correlation is computed between numerical variables.
- Step 3: Missing values are removed to avoid errors during computation.
- Step 4: The corr() method computes pairwise correlations between columns.
- Step 5: sns.heatmap() creates a visual representation where colors represent correlation strength, annot=True adds the actual correlation coefficients, cmap='coolwarm' uses a diverging color scheme, and fmt='.2f' formats numbers to two decimal places.

#Seaborn #DataVisualization #Heatmap #Python #Pandas #CorrelationMatrix #IntermediateProgramming

By: @DataScienceQ 🚀