This media is not supported in your browser
VIEW IN TELEGRAM
NVIDIA introduces Describe Anything Model (DAM)
a new state-of-the-art model designed to generate rich, detailed descriptions for specific regions in images and videos. Users can mark these regions using points, boxes, scribbles, or masks.
DAM sets a new benchmark in multimodal understanding, with open-source code under the Apache license, a dedicated dataset, and a live demo available on Hugging Face.
Explore more below:
Paper: https://lnkd.in/dZh82xtV
Project Page: https://lnkd.in/dcv9V2ZF
GitHub Repo: https://lnkd.in/dJB9Ehtb
Hugging Face Demo: https://lnkd.in/dXDb2MWU
Review: https://t.ly/la4JD
a new state-of-the-art model designed to generate rich, detailed descriptions for specific regions in images and videos. Users can mark these regions using points, boxes, scribbles, or masks.
DAM sets a new benchmark in multimodal understanding, with open-source code under the Apache license, a dedicated dataset, and a live demo available on Hugging Face.
Explore more below:
Paper: https://lnkd.in/dZh82xtV
Project Page: https://lnkd.in/dcv9V2ZF
GitHub Repo: https://lnkd.in/dJB9Ehtb
Hugging Face Demo: https://lnkd.in/dXDb2MWU
Review: https://t.ly/la4JD
#NVIDIA #DescribeAnything #ComputerVision #MultimodalAI #DeepLearning #ArtificialIntelligence #MachineLearning #OpenSource #HuggingFace #GenerativeAI #VisualUnderstanding #Python #AIresearch
https://t.iss.one/DataScienceT✅
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5
Forwarded from Machine Learning with Python
🎯 ابدأ رحلتك الاحترافية في البرمجة مع
#Python_Mastery_Course 🐍
هل ترغب بتعلم لغة البرمجة الأكثر طلبًا في العالم؟
هل تحلم بالوصول إلى مجالات مثل الذكاء الاصطناعي، تحليل البيانات أو تصميم الواجهات؟
📢 هذه الدورة خُصصت لتكون نقطة انطلاقك نحو المستقبل!
________________________________________
🚀 ماذا ستتعلم في هذه الدورة؟
🔹 الوحدة 1: أساسيات بايثون (المتغيرات – أنواع البيانات – العمليات – أساسيات الكود)
🔹 الوحدة 2: التحكم في سير البرنامج (الشروط – الحلقات – أوامر التحكم)
🔹 الوحدة 3: هياكل البيانات (قوائم – قواميس – مجموعات – Tuples)
🔹 الوحدة 4: الدوال (إنشاء – معاملات – النطاق – التكرار)
🔹 الوحدة 5: الوحدات (Modules)
🔹 الوحدة 6: التعامل مع الملفات وملفات CSV
🔹 الوحدة 7: معالجة الاستثناءات باحتراف
🔹 الوحدة 8: البرمجة الكائنية (OOP)
🔹 الوحدة 9: المفاهيم المتقدمة:
✅ المولدات (Generators)
✅ الكائنات القابلة للتكرار (Iterators)
✅ المزينات (Decorators)
💡 عند انتهائك ستكون قادرًا على:
✔️ بناء مشاريع حقيقية بلغة بايثون
✔️ الانتقال بثقة إلى مجالات متقدمة مثل الذكاء الاصطناعي وتحليل البيانات
✔️ أتمتة المهام والتعامل مع البيانات باحتراف
🎥 نظام الدورة:
• بث مباشر Live مع المدرب د. محمد عماد عرفه
• جميع المحاضرات ستُرفع على الموقع لتشاهدها في الوقت الذي يناسبك
🕒 مدة الدورة: 25 ساعة تدريبية
📅 تاريخ البداية:15- 6
💰 خصم للحجز المبكر
تواصل الآن مع ذكر كود الدورة"001"
https://t.iss.one/Agartha_Support
#Python_Mastery_Course 🐍
هل ترغب بتعلم لغة البرمجة الأكثر طلبًا في العالم؟
هل تحلم بالوصول إلى مجالات مثل الذكاء الاصطناعي، تحليل البيانات أو تصميم الواجهات؟
📢 هذه الدورة خُصصت لتكون نقطة انطلاقك نحو المستقبل!
________________________________________
🚀 ماذا ستتعلم في هذه الدورة؟
🔹 الوحدة 1: أساسيات بايثون (المتغيرات – أنواع البيانات – العمليات – أساسيات الكود)
🔹 الوحدة 2: التحكم في سير البرنامج (الشروط – الحلقات – أوامر التحكم)
🔹 الوحدة 3: هياكل البيانات (قوائم – قواميس – مجموعات – Tuples)
🔹 الوحدة 4: الدوال (إنشاء – معاملات – النطاق – التكرار)
🔹 الوحدة 5: الوحدات (Modules)
🔹 الوحدة 6: التعامل مع الملفات وملفات CSV
🔹 الوحدة 7: معالجة الاستثناءات باحتراف
🔹 الوحدة 8: البرمجة الكائنية (OOP)
🔹 الوحدة 9: المفاهيم المتقدمة:
✅ المولدات (Generators)
✅ الكائنات القابلة للتكرار (Iterators)
✅ المزينات (Decorators)
💡 عند انتهائك ستكون قادرًا على:
✔️ بناء مشاريع حقيقية بلغة بايثون
✔️ الانتقال بثقة إلى مجالات متقدمة مثل الذكاء الاصطناعي وتحليل البيانات
✔️ أتمتة المهام والتعامل مع البيانات باحتراف
🎥 نظام الدورة:
• بث مباشر Live مع المدرب د. محمد عماد عرفه
• جميع المحاضرات ستُرفع على الموقع لتشاهدها في الوقت الذي يناسبك
🕒 مدة الدورة: 25 ساعة تدريبية
📅 تاريخ البداية:15- 6
💰 خصم للحجز المبكر
تواصل الآن مع ذكر كود الدورة"001"
https://t.iss.one/Agartha_Support
Telegram
Agartha Support
Forwarded from Machine Learning with Python
🚀 FREE IT Study Kits for 2025 — Grab Yours Now!
Just found these zero-cost resources from SPOTO👇
Perfect if you're prepping for #Cisco, #AWS, #PMP, #AI, #Python, #Excel, or #Cybersecurity!
✅ 100% Free
✅ No signup traps
✅ Instantly downloadable
📘 IT Certs E-book: https://bit.ly/4fJSoLP
☁️ Cloud & AI Kits: https://bit.ly/3F3lc5B
📊 Cybersecurity, Python & Excel: https://bit.ly/4mFrA4g
🧠 Skill Test (Free!): https://bit.ly/3PoKH39
Tag a friend & level up together 💪
🌐 Join the IT Study Group: https://chat.whatsapp.com/E3Vkxa19HPO9ZVkWslBO8s
📲 1-on-1 Exam Help: https://wa.link/k0vy3x
👑Last 24 HOURS to grab Mid-Year Mega Sale prices!Don’t miss Lucky Draw👇
https://bit.ly/43VgcbT
Just found these zero-cost resources from SPOTO👇
Perfect if you're prepping for #Cisco, #AWS, #PMP, #AI, #Python, #Excel, or #Cybersecurity!
✅ 100% Free
✅ No signup traps
✅ Instantly downloadable
📘 IT Certs E-book: https://bit.ly/4fJSoLP
☁️ Cloud & AI Kits: https://bit.ly/3F3lc5B
📊 Cybersecurity, Python & Excel: https://bit.ly/4mFrA4g
🧠 Skill Test (Free!): https://bit.ly/3PoKH39
Tag a friend & level up together 💪
🌐 Join the IT Study Group: https://chat.whatsapp.com/E3Vkxa19HPO9ZVkWslBO8s
📲 1-on-1 Exam Help: https://wa.link/k0vy3x
👑Last 24 HOURS to grab Mid-Year Mega Sale prices!Don’t miss Lucky Draw👇
https://bit.ly/43VgcbT
Forwarded from Machine Learning with Python
🚀 2025 FREE Study Recourses from SPOTO for y’all — Don’t Miss Out!
✅ 100% Free Downloads
✅ No signup / spam
📘 #Python, Cybersecurity & Excel: https://bit.ly/4lYeVYp
📊 #Cloud Computing: https://bit.ly/45Rj1gm
☁️ #AI Kits: https://bit.ly/4m4bHTc
🔐 #CCNA Courses: https://bit.ly/45TL7rm
🧠 Free Online Practice – Test Now: https://bit.ly/41Kurjr
September 8th to 21th, SPOTO launches the Lowest Price Ever on ALL products! 🔥
Amazing Discounts for 📌 CCNA 200-301 📌 CCNP 400-007 and more…
📲 Contact admin to grab them: https://wa.link/uxde01
✅ 100% Free Downloads
✅ No signup / spam
📘 #Python, Cybersecurity & Excel: https://bit.ly/4lYeVYp
📊 #Cloud Computing: https://bit.ly/45Rj1gm
☁️ #AI Kits: https://bit.ly/4m4bHTc
🔐 #CCNA Courses: https://bit.ly/45TL7rm
🧠 Free Online Practice – Test Now: https://bit.ly/41Kurjr
September 8th to 21th, SPOTO launches the Lowest Price Ever on ALL products! 🔥
Amazing Discounts for 📌 CCNA 200-301 📌 CCNP 400-007 and more…
📲 Contact admin to grab them: https://wa.link/uxde01
❤1
💡 ViT for Fashion MNIST Classification
This lesson demonstrates how to use a pre-trained Vision Transformer (ViT) to classify an image from the Fashion MNIST dataset. ViT treats an image as a sequence of patches, similar to how language models treat sentences, making it a powerful architecture for computer vision tasks. We will use a model from the Hugging Face Hub that is already fine-tuned for this specific dataset.
Code explanation: This script uses the
#Python #MachineLearning #ViT #ComputerVision #HuggingFace
━━━━━━━━━━━━━━━
By: @DataScienceT ✨
This lesson demonstrates how to use a pre-trained Vision Transformer (ViT) to classify an image from the Fashion MNIST dataset. ViT treats an image as a sequence of patches, similar to how language models treat sentences, making it a powerful architecture for computer vision tasks. We will use a model from the Hugging Face Hub that is already fine-tuned for this specific dataset.
from transformers import ViTImageProcessor, ViTForImageClassification
from datasets import load_dataset
import torch
# 1. Load a model fine-tuned on Fashion MNIST and its processor
model_name = "abhishek/autotrain-fashion-mnist-283834433"
processor = ViTImageProcessor.from_pretrained(model_name)
model = ViTForImageClassification.from_pretrained(model_name)
# 2. Load the dataset and get a sample image
dataset = load_dataset("fashion_mnist", split="test")
image = dataset[100]['image'] # Get the 100th image
# 3. Preprocess the image and prepare it for the model
inputs = processor(images=image, return_tensors="pt")
# 4. Perform inference to get the classification logits
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
# 5. Get the predicted class and its label
predicted_class_idx = logits.argmax(-1).item()
predicted_class = model.config.id2label[predicted_class_idx]
print(f"Image is a: {dataset[100]['label']}")
print(f"Model predicted: {predicted_class}")
Code explanation: This script uses the
transformers library to load a ViT model specifically fine-tuned for Fashion MNIST classification. It then loads the dataset, selects a single sample image, and uses the model's processor to convert it into the correct input format. The model performs inference, and the script identifies the most likely class from the output logits, printing the final human-readable prediction.#Python #MachineLearning #ViT #ComputerVision #HuggingFace
━━━━━━━━━━━━━━━
By: @DataScienceT ✨
💡 ViT for Fashion MNIST Classification
This lesson demonstrates how to use a pre-trained Vision Transformer (ViT) to classify an image from the Fashion MNIST dataset. ViT treats an image as a sequence of patches, similar to how language models treat sentences, making it a powerful architecture for computer vision tasks. We will use a model from the Hugging Face Hub that is already fine-tuned for this specific dataset.
Code explanation: This script uses the
#Python #MachineLearning #ViT #ComputerVision #HuggingFace
━━━━━━━━━━━━━━━
By: @DataScienceT ✨
This lesson demonstrates how to use a pre-trained Vision Transformer (ViT) to classify an image from the Fashion MNIST dataset. ViT treats an image as a sequence of patches, similar to how language models treat sentences, making it a powerful architecture for computer vision tasks. We will use a model from the Hugging Face Hub that is already fine-tuned for this specific dataset.
from transformers import ViTImageProcessor, ViTForImageClassification
from datasets import load_dataset
import torch
# 1. Load a model fine-tuned on Fashion MNIST and its processor
model_name = "abhishek/autotrain-fashion-mnist-283834433"
processor = ViTImageProcessor.from_pretrained(model_name)
model = ViTForImageClassification.from_pretrained(model_name)
# 2. Load the dataset and get a sample image
dataset = load_dataset("fashion_mnist", split="test")
image = dataset[100]['image'] # Get the 100th image
# 3. Preprocess the image and prepare it for the model
inputs = processor(images=image, return_tensors="pt")
# 4. Perform inference to get the classification logits
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
# 5. Get the predicted class and its label
predicted_class_idx = logits.argmax(-1).item()
predicted_class = model.config.id2label[predicted_class_idx]
print(f"Image is a: {dataset[100]['label']}")
print(f"Model predicted: {predicted_class}")
Code explanation: This script uses the
transformers library to load a ViT model specifically fine-tuned for Fashion MNIST classification. It then loads the dataset, selects a single sample image, and uses the model's processor to convert it into the correct input format. The model performs inference, and the script identifies the most likely class from the output logits, printing the final human-readable prediction.#Python #MachineLearning #ViT #ComputerVision #HuggingFace
━━━━━━━━━━━━━━━
By: @DataScienceT ✨
🤖🧠 Reflex: Build Full-Stack Web Apps in Pure Python — Fast, Flexible and Powerful
🗓️ 29 Oct 2025
📚 AI News & Trends
Building modern web applications has traditionally required mastering multiple languages and frameworks from JavaScript for the frontend to Python, Java or Node.js for the backend. For many developers, switching between different technologies can slow down productivity and increase complexity. Reflex eliminates that problem. It is an innovative open-source full-stack web framework that allows developers to ...
#Reflex #FullStack #WebDevelopment #Python #OpenSource #WebApps
🗓️ 29 Oct 2025
📚 AI News & Trends
Building modern web applications has traditionally required mastering multiple languages and frameworks from JavaScript for the frontend to Python, Java or Node.js for the backend. For many developers, switching between different technologies can slow down productivity and increase complexity. Reflex eliminates that problem. It is an innovative open-source full-stack web framework that allows developers to ...
#Reflex #FullStack #WebDevelopment #Python #OpenSource #WebApps
Top 100 Data Analyst Interview Questions & Answers
#DataAnalysis #InterviewQuestions #SQL #Python #Statistics #CaseStudy #DataScience
Part 1: SQL Questions (Q1-30)
#1. What is the difference between
A:
•
•
•
#2. Select all unique departments from the
A: Use the
#3. Find the top 5 highest-paid employees.
A: Use
#4. What is the difference between
A:
•
•
#5. What are the different types of SQL joins?
A:
•
•
•
•
•
#6. Write a query to find the second-highest salary.
A: Use
#7. Find duplicate emails in a
A: Group by the email column and use
#8. What is a primary key vs. a foreign key?
A:
• A Primary Key is a constraint that uniquely identifies each record in a table. It must contain unique values and cannot contain NULL values.
• A Foreign Key is a key used to link two tables together. It is a field (or collection of fields) in one table that refers to the Primary Key in another table.
#9. Explain Window Functions. Give an example.
A: Window functions perform a calculation across a set of table rows that are somehow related to the current row. Unlike aggregate functions, they do not collapse rows.
#10. What is a CTE (Common Table Expression)?
A: A CTE is a temporary, named result set that you can reference within a
#DataAnalysis #InterviewQuestions #SQL #Python #Statistics #CaseStudy #DataScience
Part 1: SQL Questions (Q1-30)
#1. What is the difference between
DELETE, TRUNCATE, and DROP?A:
•
DELETE is a DML command that removes rows from a table based on a WHERE clause. It is slower as it logs each row deletion and can be rolled back.•
TRUNCATE is a DDL command that quickly removes all rows from a table. It is faster, cannot be rolled back, and resets table identity.•
DROP is a DDL command that removes the entire table, including its structure, data, and indexes.#2. Select all unique departments from the
employees table.A: Use the
DISTINCT keyword.SELECT DISTINCT department
FROM employees;
#3. Find the top 5 highest-paid employees.
A: Use
ORDER BY and LIMIT.SELECT name, salary
FROM employees
ORDER BY salary DESC
LIMIT 5;
#4. What is the difference between
WHERE and HAVING?A:
•
WHERE is used to filter records before any groupings are made (i.e., it operates on individual rows).•
HAVING is used to filter groups after aggregations (GROUP BY) have been performed.-- Find departments with more than 10 employees
SELECT department, COUNT(employee_id)
FROM employees
GROUP BY department
HAVING COUNT(employee_id) > 10;
#5. What are the different types of SQL joins?
A:
•
(INNER) JOIN: Returns records that have matching values in both tables.•
LEFT (OUTER) JOIN: Returns all records from the left table, and the matched records from the right table.•
RIGHT (OUTER) JOIN: Returns all records from the right table, and the matched records from the left table.•
FULL (OUTER) JOIN: Returns all records when there is a match in either the left or right table.•
SELF JOIN: A regular join, but the table is joined with itself.#6. Write a query to find the second-highest salary.
A: Use
OFFSET or a subquery.-- Method 1: Using OFFSET
SELECT salary
FROM employees
ORDER BY salary DESC
LIMIT 1 OFFSET 1;
-- Method 2: Using a Subquery
SELECT MAX(salary)
FROM employees
WHERE salary < (SELECT MAX(salary) FROM employees);
#7. Find duplicate emails in a
customers table.A: Group by the email column and use
HAVING to find groups with a count greater than 1.SELECT email, COUNT(email)
FROM customers
GROUP BY email
HAVING COUNT(email) > 1;
#8. What is a primary key vs. a foreign key?
A:
• A Primary Key is a constraint that uniquely identifies each record in a table. It must contain unique values and cannot contain NULL values.
• A Foreign Key is a key used to link two tables together. It is a field (or collection of fields) in one table that refers to the Primary Key in another table.
#9. Explain Window Functions. Give an example.
A: Window functions perform a calculation across a set of table rows that are somehow related to the current row. Unlike aggregate functions, they do not collapse rows.
-- Rank employees by salary within each department
SELECT
name,
department,
salary,
RANK() OVER (PARTITION BY department ORDER BY salary DESC) as dept_rank
FROM employees;
#10. What is a CTE (Common Table Expression)?
A: A CTE is a temporary, named result set that you can reference within a
SELECT, INSERT, UPDATE, or DELETE statement. It helps improve readability and break down complex queries.❤2
✨Gradio: Hassle-Free Sharing and Testing of ML Models in the Wild
📝 Summary:
Gradio is an open-source Python package that creates visual interfaces for ML models, making them accessible to non-specialized users via a URL. This improves collaboration by allowing easy interaction, feedback, and trust-building in interdisciplinary settings.
🔹 Publication Date: Published on Jun 6, 2019
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/1906.02569
• PDF: https://arxiv.org/pdf/1906.02569
• Github: https://github.com/gradio-app/gradio
🔹 Models citing this paper:
• https://huggingface.co/CxECHO/CE
✨ Datasets citing this paper:
• https://huggingface.co/datasets/society-ethics/papers
✨ Spaces citing this paper:
• https://huggingface.co/spaces/orYx-models/Nudge_Generator
• https://huggingface.co/spaces/society-ethics/about
• https://huggingface.co/spaces/mindmime/gradio
==================================
For more data science resources:
✓ https://t.iss.one/DataScienceT
#Gradio #MachineLearning #MLOps #Python #DataScience
📝 Summary:
Gradio is an open-source Python package that creates visual interfaces for ML models, making them accessible to non-specialized users via a URL. This improves collaboration by allowing easy interaction, feedback, and trust-building in interdisciplinary settings.
🔹 Publication Date: Published on Jun 6, 2019
🔹 Paper Links:
• arXiv Page: https://arxiv.org/abs/1906.02569
• PDF: https://arxiv.org/pdf/1906.02569
• Github: https://github.com/gradio-app/gradio
🔹 Models citing this paper:
• https://huggingface.co/CxECHO/CE
✨ Datasets citing this paper:
• https://huggingface.co/datasets/society-ethics/papers
✨ Spaces citing this paper:
• https://huggingface.co/spaces/orYx-models/Nudge_Generator
• https://huggingface.co/spaces/society-ethics/about
• https://huggingface.co/spaces/mindmime/gradio
==================================
For more data science resources:
✓ https://t.iss.one/DataScienceT
#Gradio #MachineLearning #MLOps #Python #DataScience
arXiv.org
Gradio: Hassle-Free Sharing and Testing of ML Models in the Wild
Accessibility is a major challenge of machine learning (ML). Typical ML models are built by specialists and require specialized hardware/software as well as ML experience to validate. This makes...