Topic: Python Script to Convert a Shared ChatGPT Link to PDF – Step-by-Step Guide
---
### Objective
In this lesson, we’ll build a Python script that:
• Takes a ChatGPT share link (e.g.,
• Downloads the HTML content of the chat
• Converts it to a PDF file using
This is useful for archiving, sharing, or printing ChatGPT conversations in a clean format.
---
### 1. Prerequisites
Before starting, you need the following libraries and tools:
#### • Install
#### • Install
Download from:
[https://wkhtmltopdf.org/downloads.html](https://wkhtmltopdf.org/downloads.html)
Make sure to add the path of the installed binary to your system PATH.
---
### 2. Python Script: Convert Shared ChatGPT URL to PDF
---
### 3. Notes
• This approach works only if the shared page is publicly accessible (which ChatGPT share links are).
• The PDF output will contain the web page version, including theme and layout.
• You can customize the PDF output using
---
### 4. Optional Enhancements
• Add GUI with Tkinter
• Accept multiple URLs
• Add PDF metadata (title, author, etc.)
• Add support for offline rendering using
---
### Exercise
• Try converting multiple ChatGPT share links to PDF
• Customize the styling with your own CSS
• Add a timestamp or watermark to the PDF
---
#Python #ChatGPT #PDF #WebScraping #Automation #pdfkit #tkinter
https://t.iss.one/CodeProgrammer✅
---
### Objective
In this lesson, we’ll build a Python script that:
• Takes a ChatGPT share link (e.g.,
https://chat.openai.com/share/abc123)• Downloads the HTML content of the chat
• Converts it to a PDF file using
pdfkit and wkhtmltopdfThis is useful for archiving, sharing, or printing ChatGPT conversations in a clean format.
---
### 1. Prerequisites
Before starting, you need the following libraries and tools:
#### • Install
pdfkit and requestspip install pdfkit requests
#### • Install
wkhtmltopdfDownload from:
[https://wkhtmltopdf.org/downloads.html](https://wkhtmltopdf.org/downloads.html)
Make sure to add the path of the installed binary to your system PATH.
---
### 2. Python Script: Convert Shared ChatGPT URL to PDF
import pdfkit
import requests
import os
# Define output filename
output_file = "chatgpt_conversation.pdf"
# ChatGPT shared URL (user input)
chat_url = input("Enter the ChatGPT share URL: ").strip()
# Verify the URL format
if not chat_url.startswith("https://chat.openai.com/share/"):
print("Invalid URL. Must start with https://chat.openai.com/share/")
exit()
try:
# Download HTML content
response = requests.get(chat_url)
if response.status_code != 200:
raise Exception(f"Failed to load the chat: {response.status_code}")
html_content = response.text
# Save HTML to temporary file
with open("temp_chat.html", "w", encoding="utf-8") as f:
f.write(html_content)
# Convert HTML to PDF
pdfkit.from_file("temp_chat.html", output_file)
print(f"\n✅ PDF saved as: {output_file}")
# Optional: remove temp file
os.remove("temp_chat.html")
except Exception as e:
print(f"❌ Error: {e}")
---
### 3. Notes
• This approach works only if the shared page is publicly accessible (which ChatGPT share links are).
• The PDF output will contain the web page version, including theme and layout.
• You can customize the PDF output using
pdfkit options (like page size, margins, etc.).---
### 4. Optional Enhancements
• Add GUI with Tkinter
• Accept multiple URLs
• Add PDF metadata (title, author, etc.)
• Add support for offline rendering using
BeautifulSoup to clean content---
### Exercise
• Try converting multiple ChatGPT share links to PDF
• Customize the styling with your own CSS
• Add a timestamp or watermark to the PDF
---
#Python #ChatGPT #PDF #WebScraping #Automation #pdfkit #tkinter
https://t.iss.one/CodeProgrammer
Please open Telegram to view this post
VIEW IN TELEGRAM
❤8
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
element = WebDriverWait(driver, 10).until(
EC.presence_of_element_located((By.ID, "myDynamicElement"))
)
• Get the page source after JavaScript has executed.
dynamic_html = driver.page_source
• Close the browser window.
driver.quit()
VII. Common Tasks & Best Practices
• Handle pagination by finding the "Next" link.
next_page_url = soup.find('a', text='Next')['href']• Save data to a CSV file.
import csv
with open('data.csv', 'w', newline='', encoding='utf-8') as f:
writer = csv.writer(f)
writer.writerow(['Title', 'Link'])
# writer.writerow([title, url]) in a loop
• Save data to CSV using
pandas.import pandas as pd
df = pd.DataFrame(data, columns=['Title', 'Link'])
df.to_csv('data.csv', index=False)
• Use a proxy with
requests.proxies = {'http': 'https://10.10.1.10:3128', 'https': 'https://10.10.1.10:1080'}
requests.get('https://example.com', proxies=proxies)• Pause between requests to be polite.
import time
time.sleep(2) # Pause for 2 seconds
• Handle JSON data from an API.
json_response = requests.get('https://api.example.com/data').json()• Download a file (like an image).
img_url = 'https://example.com/image.jpg'
img_data = requests.get(img_url).content
with open('image.jpg', 'wb') as handler:
handler.write(img_data)
• Parse a
sitemap.xml to find all URLs.# Get the sitemap.xml file and parse it like any other XML/HTML to extract <loc> tags.
VIII. Advanced Frameworks (
Scrapy)• Create a Scrapy spider (conceptual command).
scrapy genspider example example.com
• Define a
parse method to process the response.# In your spider class:
def parse(self, response):
# parsing logic here
pass
• Extract data using Scrapy's CSS selectors.
titles = response.css('h1::text').getall()• Extract data using Scrapy's XPath selectors.
links = response.xpath('//a/@href').getall()• Yield a dictionary of scraped data.
yield {'title': response.css('title::text').get()}• Follow a link to parse the next page.
next_page = response.css('li.next a::attr(href)').get()
if next_page is not None:
yield response.follow(next_page, callback=self.parse)• Run a spider from the command line.
scrapy crawl example -o output.json
• Pass arguments to a spider.
scrapy crawl example -a category=books
• Create a Scrapy Item for structured data.
import scrapy
class ProductItem(scrapy.Item):
name = scrapy.Field()
price = scrapy.Field()
• Use an Item Loader to populate Items.
from scrapy.loader import ItemLoader
loader = ItemLoader(item=ProductItem(), response=response)
loader.add_css('name', 'h1.product-name::text')
#Python #WebScraping #BeautifulSoup #Selenium #Requests
━━━━━━━━━━━━━━━
By: @DataScienceN ✨
❤3