Data Management With Python, SQLite, and SQLAlchemy
In this tutorial, you’ll learn how to use:
1⃣ Flat files for data storage
🔢 SQL to improve access to persistent data
🔢 SQLite for data storage
🔢 SQLAlchemy to work with data as Python objects
Enroll Free: https://realpython.com/python-sqlite-sqlalchemy/
In this tutorial, you’ll learn how to use:
Enroll Free: https://realpython.com/python-sqlite-sqlalchemy/
#python #programming #developer #programmer #coding #coder #softwaredeveloper #computerscience #webdev #webdeveloper #webdevelopment #pythonprogramming #pythonquiz #ai #ml #machinelearning #datascience #django #SQLAlchemy #SQLite #SQL
https://t.iss.one/DataScience4
Please open Telegram to view this post
VIEW IN TELEGRAM
👍8
Forwarded from Python | Machine Learning | Coding | R
In Python, lists are versatile mutable sequences with built-in methods for adding, removing, searching, sorting, and more—covering all common scenarios like dynamic data manipulation, queues, or stacks. Below is a complete breakdown of all list methods, each with syntax, an example, and output, plus key built-in functions for comprehensive use.
📚 Adding Elements
⦁ append(x): Adds a single element to the end.
⦁ extend(iterable): Adds all elements from an iterable to the end.
⦁ insert(i, x): Inserts x at index i (shifts elements right).
📚 Removing Elements
⦁ remove(x): Removes the first occurrence of x (raises ValueError if not found).
⦁ pop(i=-1): Removes and returns the element at index i (default: last).
⦁ clear(): Removes all elements.
📚 Searching and Counting
⦁ count(x): Returns the number of occurrences of x.
⦁ index(x[, start[, end]]): Returns the lowest index of x in the slice (raises ValueError if not found).
📚 Ordering and Copying
⦁ sort(key=None, reverse=False): Sorts the list in place (ascending by default; stable sort).
⦁ reverse(): Reverses the elements in place.
⦁ copy(): Returns a shallow copy of the list.
📚 Built-in Functions for Lists (Common Cases)
⦁ len(lst): Returns the number of elements.
⦁ min(lst): Returns the smallest element (raises ValueError if empty).
⦁ max(lst): Returns the largest element.
⦁ sum(lst[, start=0]): Sums the elements (start adds an offset).
⦁ sorted(lst, key=None, reverse=False): Returns a new sorted list (non-destructive).
These cover all standard operations (O(1) for append/pop from end, O(n) for most others). Use slicing
#python #lists #datastructures #methods #examples #programming
⭐ @DataScience4
📚 Adding Elements
⦁ append(x): Adds a single element to the end.
lst = [1, 2]
lst.append(3)
print(lst) # Output: [1, 2, 3]
⦁ extend(iterable): Adds all elements from an iterable to the end.
lst = [1, 2]
lst.extend([3, 4])
print(lst) # Output: [1, 2, 3, 4]
⦁ insert(i, x): Inserts x at index i (shifts elements right).
lst = [1, 3]
lst.insert(1, 2)
print(lst) # Output: [1, 2, 3]
📚 Removing Elements
⦁ remove(x): Removes the first occurrence of x (raises ValueError if not found).
lst = [1, 2, 2]
lst.remove(2)
print(lst) # Output: [1, 2]
⦁ pop(i=-1): Removes and returns the element at index i (default: last).
lst = [1, 2, 3]
item = lst.pop(1)
print(item, lst) # Output: 2 [1, 3]
⦁ clear(): Removes all elements.
lst = [1, 2, 3]
lst.clear()
print(lst) # Output: []
📚 Searching and Counting
⦁ count(x): Returns the number of occurrences of x.
lst = [1, 2, 2, 3]
print(lst.count(2)) # Output: 2
⦁ index(x[, start[, end]]): Returns the lowest index of x in the slice (raises ValueError if not found).
lst = [1, 2, 3, 2]
print(lst.index(2)) # Output: 1
📚 Ordering and Copying
⦁ sort(key=None, reverse=False): Sorts the list in place (ascending by default; stable sort).
lst = [3, 1, 2]
lst.sort()
print(lst) # Output: [1, 2, 3]
⦁ reverse(): Reverses the elements in place.
lst = [1, 2, 3]
lst.reverse()
print(lst) # Output: [3, 2, 1]
⦁ copy(): Returns a shallow copy of the list.
lst = [1, 2]
new_lst = lst.copy()
print(new_lst) # Output: [1, 2]
📚 Built-in Functions for Lists (Common Cases)
⦁ len(lst): Returns the number of elements.
lst = [1, 2, 3]
print(len(lst)) # Output: 3
⦁ min(lst): Returns the smallest element (raises ValueError if empty).
lst = [3, 1, 2]
print(min(lst)) # Output: 1
⦁ max(lst): Returns the largest element.
lst = [3, 1, 2]
print(max(lst)) # Output: 3
⦁ sum(lst[, start=0]): Sums the elements (start adds an offset).
lst = [1, 2, 3]
print(sum(lst)) # Output: 6
⦁ sorted(lst, key=None, reverse=False): Returns a new sorted list (non-destructive).
lst = [3, 1, 2]
print(sorted(lst)) # Output: [1, 2, 3]
These cover all standard operations (O(1) for append/pop from end, O(n) for most others). Use slicing
lst[start:end:step] for advanced extraction, like lst[1:3] outputs ``.#python #lists #datastructures #methods #examples #programming
Please open Telegram to view this post
VIEW IN TELEGRAM
❤6
In Python, the collections module offers specialized container datatypes that solve real-world coding challenges with elegance and efficiency. These tools are interview favorites for optimizing time complexity and writing clean, professional code! 💡
By: @DatascienceN🌟
#Python #CodingInterview #DataStructures #collections #Programming #TechJobs #Algorithm #LeetCode #DeveloperTips #CareerGrowth
import collections
# defaultdict - Eliminate key errors with auto-initialization
from collections import defaultdict
gradebook = defaultdict(int)
gradebook['Alice'] += 95
print(gradebook['Alice']) # Output: 95
print(gradebook['Bob']) # Output: 0
# defaultdict for grouping operations
anagrams = defaultdict(list)
words = ["eat", "tea", "tan"]
for w in words:
key = ''.join(sorted(w))
anagrams[key].append(w)
print(anagrams['aet']) # Output: ['eat', 'tea']
# Counter - Frequency analysis in one line
from collections import Counter
text = "abracadabra"
freq = Counter(text)
print(freq['a']) # Output: 5
print(freq.most_common(2)) # Output: [('a', 5), ('b', 2)]
# Counter arithmetic for problem-solving
inventory = Counter(apples=10, oranges=5)
sales = Counter(apples=3, oranges=2)
print(inventory - sales) # Output: Counter({'apples': 7, 'oranges': 3})
# namedtuple - Self-documenting data structures
from collections import namedtuple
Employee = namedtuple('Employee', 'name role salary')
dev = Employee('Alex', 'Developer', 95000)
print(dev.role) # Output: Developer
print(dev[2]) # Output: 95000
# deque - Optimal for BFS and sliding windows
from collections import deque
queue = deque([1, 2, 3])
queue.append(4)
queue.popleft()
print(queue) # Output: deque([2, 3, 4])
queue.rotate(1)
print(queue) # Output: deque([4, 2, 3])
# OrderedDict - Track insertion order (LRU cache essential)
from collections import OrderedDict
cache = OrderedDict()
cache['A'] = 1
cache['B'] = 2
cache.move_to_end('A')
cache.popitem(last=False)
print(list(cache.keys())) # Output: ['B', 'A']
# ChainMap - Manage layered configurations
from collections import ChainMap
defaults = {'theme': 'dark', 'font': 'Arial'}
user_prefs = {'theme': 'light'}
settings = ChainMap(user_prefs, defaults)
print(settings['font']) # Output: Arial
# Practical Interview Tip: Anagram detection
print(Counter("secure") == Counter("rescue")) # Output: True
# Pro Tip: Sliding window maximum
def max_sliding_window(nums, k):
dq, result = deque(), []
for i, n in enumerate(nums):
while dq and nums[dq[-1]] < n:
dq.pop()
dq.append(i)
if dq[0] == i - k:
dq.popleft()
if i >= k - 1:
result.append(nums[dq[0]])
return result
print(max_sliding_window([1,3,-1,-3,5,3,6,7], 3)) # Output: [3,3,5,5,6,7]
# Expert Move: Custom LRU Cache implementation
class LRUCache:
def __init__(self, capacity):
self.cache = OrderedDict()
self.capacity = capacity
def get(self, key):
if key not in self.cache:
return -1
self.cache.move_to_end(key)
return self.cache[key]
def put(self, key, value):
if key in self.cache:
del self.cache[key]
self.cache[key] = value
if len(self.cache) > self.capacity:
self.cache.popitem(last=False)
cache = LRUCache(2)
cache.put(1, 10)
cache.put(2, 20)
cache.get(1)
cache.put(3, 30)
print(list(cache.cache.keys())) # Output: [2, 1, 3] → Wait! Correction: Should be [1, 3] (capacity=2 triggers eviction of '2')
# Bonus: Multiset operations with Counter
primes = Counter([2, 3, 5, 7])
odds = Counter([1, 3, 5, 7, 9])
print(primes | odds) # Output: Counter({3:1, 5:1, 7:1, 2:1, 9:1, 1:1})
By: @DatascienceN🌟
#Python #CodingInterview #DataStructures #collections #Programming #TechJobs #Algorithm #LeetCode #DeveloperTips #CareerGrowth
❤1
# Django ORM Comparison - Know both frameworks
# Django model (contrast with SQLAlchemy)
from django.db import models
class Department(models.Model):
name = models.CharField(max_length=50)
class Employee(models.Model):
name = models.CharField(max_length=100)
email = models.EmailField(unique=True)
department = models.ForeignKey(Department, on_delete=models.CASCADE)
# Django query (similar but different syntax)
Employee.objects.filter(department__name="HR").select_related('department')
# Async ORM - Modern Python requirement
# Requires SQLAlchemy 1.4+ and asyncpg
from sqlalchemy.ext.asyncio import create_async_engine, AsyncSession
async_engine = create_async_engine(
"postgresql+asyncpg://user:pass@localhost/db",
echo=True,
)
async_session = AsyncSession(async_engine)
async with async_session.begin():
result = await async_session.execute(
select(Employee).where(Employee.name == "Alice")
)
employee = result.scalar_one()
# Testing Strategies - Interview differentiator
from unittest import mock
# Mock database for unit tests
with mock.patch('sqlalchemy.create_engine') as mock_engine:
mock_conn = mock.MagicMock()
mock_engine.return_value.connect.return_value = mock_conn
# Test your ORM-dependent code
create_employee("Test", "[email protected]")
mock_conn.execute.assert_called()
# Production Monitoring - Track slow queries
from sqlalchemy import event
@event.listens_for(engine, "before_cursor_execute")
def before_cursor(conn, cursor, statement, params, context, executemany):
conn.info.setdefault('query_start_time', []).append(time.time())
@event.listens_for(engine, "after_cursor_execute")
def after_cursor(conn, cursor, statement, params, context, executemany):
total = time.time() - conn.info['query_start_time'].pop(-1)
if total > 0.1: # Log slow queries
print(f"SLOW QUERY ({total:.2f}s): {statement}")
# Interview Power Move: Implement caching layer
from functools import lru_cache
class CachedEmployeeRepository(EmployeeRepository):
@lru_cache(maxsize=100)
def get_by_id(self, employee_id):
return super().get_by_id(employee_id)
def invalidate_cache(self, employee_id):
self.get_by_id.cache_clear()
# Reduces database hits by 70% in read-heavy applications
# Pro Tip: Schema versioning in CI/CD pipelines
# Sample .gitlab-ci.yml snippet
deploy_db:
stage: deploy
script:
- alembic upgrade head
- pytest tests/db_tests.py # Verify schema compatibility
only:
- main
# Real-World Case Study: E-commerce inventory system
class Product(Base):
__tablename__ = 'products'
id = Column(Integer, primary_key=True)
sku = Column(String(20), unique=True)
stock = Column(Integer, default=0)
# Atomic stock update (prevents race conditions)
def decrement_stock(self, quantity, session):
result = session.query(Product).filter(
Product.id == self.id,
Product.stock >= quantity
).update({"stock": Product.stock - quantity})
if not result:
raise ValueError("Insufficient stock")
# Usage during checkout
product.decrement_stock(2, session)
By: @DATASCIENCE4 🔒
#Python #ORM #SQLAlchemy #Django #Database #BackendDevelopment #CodingInterview #WebDevelopment #TechJobs #SystemDesign #SoftwareEngineering #DataEngineering #CareerGrowth #APIs #Microservices #DatabaseDesign #TechTips #DeveloperTools #Programming #CareerTips
❤3
# Interview Power Move: Parallel Merging
from concurrent.futures import ThreadPoolExecutor
from PyPDF2 import PdfMerger
def parallel_merge(pdf_list, output, max_workers=4):
chunks = [pdf_list[i::max_workers] for i in range(max_workers)]
temp_files = []
def merge_chunk(chunk, idx):
temp = f"temp_{idx}.pdf"
merger = PdfMerger()
for pdf in chunk:
merger.append(pdf)
merger.write(temp)
return temp
with ThreadPoolExecutor() as executor:
temp_files = list(executor.map(merge_chunk, chunks, range(max_workers)))
# Final merge of chunks
final_merger = PdfMerger()
for temp in temp_files:
final_merger.append(temp)
final_merger.write(output)
parallel_merge(["doc1.pdf", "doc2.pdf", ...], "parallel_merge.pdf")
# Pro Tip: Validate PDFs before merging
from PyPDF2 import PdfReader
def is_valid_pdf(path):
try:
with open(path, "rb") as f:
reader = PdfReader(f)
return len(reader.pages) > 0
except:
return False
valid_pdfs = [f for f in pdf_files if is_valid_pdf(f)]
merger.append(valid_pdfs) # Only merge valid files
# Real-World Case Study: Invoice Processing Pipeline
import glob
from PyPDF2 import PdfMerger
def process_monthly_invoices():
# 1. Download invoices from SFTP
download_invoices("sftp://vendor.com/invoices/*.pdf")
# 2. Validate and sort
invoices = sorted(
[f for f in glob.glob("invoices/*.pdf") if is_valid_pdf(f)],
key=lambda x: extract_invoice_date(x)
)
# 3. Merge with cover page
merger = PdfMerger()
merger.append("cover_template.pdf")
for inv in invoices:
merger.append(inv, outline_item=get_client_name(inv))
# 4. Add metadata and encrypt
merger.add_metadata({"/InvoiceCount": str(len(invoices))})
merger.encrypt(owner_pwd="finance_team_2023")
merger.write(f"Q3_Invoices_{datetime.now().strftime('%Y%m')}.pdf")
# 5. Upload to secure storage
upload_to_s3("secure-bucket/processed/", "Q3_Invoices.pdf")
process_monthly_invoices()
By: https://t.iss.one/DataScience4
#Python #PDFProcessing #DocumentAutomation #PyPDF2 #CodingInterview #BackendDevelopment #FileHandling #DataEngineering #TechJobs #Programming #SystemDesign #DeveloperTips #CareerGrowth #CloudComputing #Docker #Microservices #Productivity #TechTips #Python3 #SoftwareEngineering
Telegram
Python | Algorithms | Data Structures | Cyber Security | Networks
This channel is for Programmers, Coders, Software Engineers.
1) Python
2) django
3) python frameworks
4) Data Structures
5) Algorithms
6) DSA
Admin: @Hussein_Sheikho
Ad & Earn money form your channel:
https://telega.io/?r=nikapsOH
1) Python
2) django
3) python frameworks
4) Data Structures
5) Algorithms
6) DSA
Admin: @Hussein_Sheikho
Ad & Earn money form your channel:
https://telega.io/?r=nikapsOH
Forwarded from Data Science Machine Learning Data Analysis
In Python, building AI-powered Telegram bots unlocks massive potential for image generation, processing, and automation—master this to create viral tools and ace full-stack interviews! 🤖
Learn more: https://hackmd.io/@husseinsheikho/building-AI-powered-Telegram-bots
https://t.iss.one/DataScienceM🦾
# Basic Bot Setup - The foundation (PTB v20+ Async)
from telegram.ext import Application, CommandHandler, MessageHandler, filters
async def start(update, context):
await update.message.reply_text(
"✨ AI Image Bot Active!\n"
"/generate - Create images from text\n"
"/enhance - Improve photo quality\n"
"/help - Full command list"
)
app = Application.builder().token("YOUR_BOT_TOKEN").build()
app.add_handler(CommandHandler("start", start))
app.run_polling()
# Image Generation - DALL-E Integration (OpenAI)
import openai
from telegram.ext import ContextTypes
openai.api_key = os.getenv("OPENAI_API_KEY")
async def generate(update: Update, context: ContextTypes.DEFAULT_TYPE):
if not context.args:
await update.message.reply_text("❌ Usage: /generate cute robot astronaut")
return
prompt = " ".join(context.args)
try:
response = openai.Image.create(
prompt=prompt,
n=1,
size="1024x1024"
)
await update.message.reply_photo(
photo=response['data'][0]['url'],
caption=f"🎨 Generated: *{prompt}*",
parse_mode="Markdown"
)
except Exception as e:
await update.message.reply_text(f"🔥 Error: {str(e)}")
app.add_handler(CommandHandler("generate", generate))
Learn more: https://hackmd.io/@husseinsheikho/building-AI-powered-Telegram-bots
#Python #TelegramBot #AI #ImageGeneration #StableDiffusion #OpenAI #MachineLearning #CodingInterview #FullStack #Chatbots #DeepLearning #ComputerVision #Programming #TechJobs #DeveloperTips #CareerGrowth #CloudComputing #Docker #APIs #Python3 #Productivity #TechTips
https://t.iss.one/DataScienceM
Please open Telegram to view this post
VIEW IN TELEGRAM
💡 Python Lists Cheatsheet: Essential Operations
This lesson provides a quick reference for common Python list operations. Lists are ordered, mutable collections of items, and mastering their use is fundamental for Python programming. This cheatsheet covers creation, access, modification, and utility methods.
Code explanation: This script demonstrates fundamental list operations in Python. It covers creating lists, accessing elements using indexing and slicing, modifying existing elements, adding new items with
#Python #Lists #DataStructures #Programming #Cheatsheet
━━━━━━━━━━━━━━━
By: @DataScience4✨
This lesson provides a quick reference for common Python list operations. Lists are ordered, mutable collections of items, and mastering their use is fundamental for Python programming. This cheatsheet covers creation, access, modification, and utility methods.
# 1. List Creation
my_list = [1, "hello", 3.14, True]
empty_list = []
numbers = list(range(5)) # [0, 1, 2, 3, 4]
# 2. Accessing Elements (Indexing & Slicing)
first_element = my_list[0] # 1
last_element = my_list[-1] # True
sub_list = my_list[1:3] # ["hello", 3.14]
copy_all = my_list[:] # [1, "hello", 3.14, True]
# 3. Modifying Elements
my_list[1] = "world" # my_list is now [1, "world", 3.14, True]
# 4. Adding Elements
my_list.append(False) # [1, "world", 3.14, True, False]
my_list.insert(1, "new item") # [1, "new item", "world", 3.14, True, False]
another_list = [5, 6]
my_list.extend(another_list) # [1, "new item", "world", 3.14, True, False, 5, 6]
# 5. Removing Elements
removed_value = my_list.pop() # Removes and returns last item (6)
removed_at_index = my_list.pop(1) # Removes and returns "new item"
my_list.remove("world") # Removes the first occurrence of "world"
del my_list[0] # Deletes item at index 0 (1)
my_list.clear() # Removes all items, list becomes []
# Re-create for other examples
numbers = [3, 1, 4, 1, 5, 9, 2]
# 6. List Information
list_length = len(numbers) # 7
count_ones = numbers.count(1) # 2
index_of_five = numbers.index(5) # 4 (first occurrence)
is_present = 9 in numbers # True
is_not_present = 10 not in numbers # True
# 7. Sorting
numbers_sorted_asc = sorted(numbers) # Returns new list: [1, 1, 2, 3, 4, 5, 9]
numbers.sort(reverse=True) # Sorts in-place: [9, 5, 4, 3, 2, 1, 1]
# 8. Reversing
numbers.reverse() # Reverses in-place: [1, 1, 2, 3, 4, 5, 9]
# 9. Iteration
for item in numbers:
# print(item)
pass # Placeholder for loop body
# 10. List Comprehensions (Concise creation/transformation)
squares = [x**2 for x in range(5)] # [0, 1, 4, 9, 16]
even_numbers = [x for x in numbers if x % 2 == 0] # [2, 4]
Code explanation: This script demonstrates fundamental list operations in Python. It covers creating lists, accessing elements using indexing and slicing, modifying existing elements, adding new items with
append(), insert(), and extend(), and removing items using pop(), remove(), del, and clear(). It also shows how to get list information like length (len()), item counts (count()), and indices (index()), check for item existence (in), sort (sort(), sorted()), reverse (reverse()), and iterate through lists. Finally, it illustrates list comprehensions for concise list generation and filtering.#Python #Lists #DataStructures #Programming #Cheatsheet
━━━━━━━━━━━━━━━
By: @DataScience4
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2
💡 Python Tips Part 1
A collection of essential Python tricks to make your code more efficient, readable, and "Pythonic." This part covers list comprehensions, f-strings, tuple unpacking, and using
• List Comprehensions: A concise and often faster way to create lists. The syntax is
• F-Strings: The modern, readable way to format strings. Simply prefix the string with
• Extended Unpacking: Use the asterisk
• Using
#Python #Programming #CodeTips #PythonTricks
━━━━━━━━━━━━━━━
By: @DataScience4 ✨
A collection of essential Python tricks to make your code more efficient, readable, and "Pythonic." This part covers list comprehensions, f-strings, tuple unpacking, and using
enumerate.# Create a list of squares from 0 to 9
squares = [x**2 for x in range(10)]
print(squares)
# Output: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
• List Comprehensions: A concise and often faster way to create lists. The syntax is
[expression for item in iterable].name = "Alex"
score = 95.5
# Using an f-string for easy formatting
message = f"Congratulations {name}, you scored {score:.1f}!"
print(message)
# Output: Congratulations Alex, you scored 95.5!
• F-Strings: The modern, readable way to format strings. Simply prefix the string with
f and place variables or expressions directly inside curly braces {}.numbers = (1, 2, 3, 4, 5)
# Unpack the first, last, and middle elements
first, *middle, last = numbers
print(f"First: {first}") # 1
print(f"Middle: {middle}") # [2, 3, 4]
print(f"Last: {last}") # 5
• Extended Unpacking: Use the asterisk
* operator to capture multiple items from an iterable into a list during assignment. It's perfect for separating the "head" and "tail" from the rest.items = ['keyboard', 'mouse', 'monitor']
for index, item in enumerate(items):
print(f"Item #{index}: {item}")
# Output:
# Item #0: keyboard
# Item #1: mouse
# Item #2: monitor
• Using
enumerate: The Pythonic way to get both the index and the value of an item when looping. It's much cleaner than using range(len(items)).#Python #Programming #CodeTips #PythonTricks
━━━━━━━━━━━━━━━
By: @DataScience4 ✨
❤2
💡 Python Tips Part 2
More essential Python tricks to improve your code. This part covers dictionary comprehensions, the
• Dictionary Comprehensions: A concise way to create dictionaries, similar to list comprehensions. The syntax is
• Using
• Ternary Operator: A shorthand for a simple
• Using Underscore
#Python #Programming #CodeTips #PythonTricks
━━━━━━━━━━━━━━━
By: @DataScience4 ✨
More essential Python tricks to improve your code. This part covers dictionary comprehensions, the
zip function, ternary operators, and using underscores for unused variables.# Create a dictionary of numbers and their squares
squared_dict = {x: x**2 for x in range(1, 6)}
print(squared_dict)
# Output: {1: 1, 2: 4, 3: 9, 4: 16, 5: 25}
• Dictionary Comprehensions: A concise way to create dictionaries, similar to list comprehensions. The syntax is
{key_expr: value_expr for item in iterable}.students = ["Alice", "Bob", "Charlie"]
scores = [88, 92, 79]
for student, score in zip(students, scores):
print(f"{student}: {score}")
# Output:
# Alice: 88
# Bob: 92
# Charlie: 79
• Using
zip: The zip function combines multiple iterables (like lists or tuples) into a single iterator of tuples. It's perfect for looping over related lists in parallel.age = 20
# Assign a value based on a condition in one line
status = "Adult" if age >= 18 else "Minor"
print(status)
# Output: Adult
• Ternary Operator: A shorthand for a simple
if-else statement, useful for conditional assignments. The syntax is value_if_true if condition else value_if_false.# Looping 3 times without needing the loop variable
for _ in range(3):
print("Hello, Python!")
# Unpacking, but only needing the last value
_, _, last_item = (10, 20, 30)
print(last_item) # 30
• Using Underscore
_: By convention, the underscore _ is used as a variable name when you need a placeholder but don't intend to use its value. This signals to other developers that the variable is intentionally ignored.#Python #Programming #CodeTips #PythonTricks
━━━━━━━━━━━━━━━
By: @DataScience4 ✨
❤1
💡 Python Tips Part 3
Advancing your Python skills with more powerful techniques. This part covers safe dictionary access with
• Dictionary
•
• The
#Python #Programming #CodeTips #PythonTricks
━━━━━━━━━━━━━━━
By: @DataScience4 ✨
Advancing your Python skills with more powerful techniques. This part covers safe dictionary access with
.get(), flexible function arguments with *args and **kwargs, and context managers using the with statement.user_data = {"name": "Alice", "age": 30}
# Safely get a key that exists
name = user_data.get("name")
# Safely get a key that doesn't exist by providing a default
city = user_data.get("city", "Not Specified")
print(f"Name: {name}, City: {city}")
# Output: Name: Alice, City: Not Specified• Dictionary
.get() Method: Access dictionary keys safely. .get(key, default) returns the value for a key if it exists, otherwise it returns the default value (which is None if not specified) without raising a KeyError.def dynamic_function(*args, **kwargs):
print("Positional args (tuple):", args)
print("Keyword args (dict):", kwargs)
dynamic_function(1, 'go', True, user="admin", status="active")
# Output:
# Positional args (tuple): (1, 'go', True)
# Keyword args (dict): {'user': 'admin', 'status': 'active'}
•
*args and **kwargs: Use these in function definitions to accept a variable number of arguments. *args collects positional arguments into a tuple, and **kwargs collects keyword arguments into a dictionary.# The 'with' statement ensures the file is closed automatically
try:
with open("notes.txt", "w") as f:
f.write("Context managers are great!")
# No need to call f.close()
print("File written and closed.")
except Exception as e:
print(f"An error occurred: {e}")
• The
with Statement: The with statement creates a context manager, which is the standard way to handle resources like files or network connections. It guarantees that cleanup code is executed, even if errors occur inside the block.#Python #Programming #CodeTips #PythonTricks
━━━━━━━━━━━━━━━
By: @DataScience4 ✨
💡 Python Tips Part 4
Level up your Python code with more advanced tips. This part covers chaining comparisons, using sets for uniqueness, and powerful tools from the
• Chaining Comparisons: Python allows you to chain comparison operators for more readable and concise range checks. This is equivalent to
• Sets for Uniqueness: Sets are unordered collections of unique elements. Converting a list to a set and back is the fastest and most Pythonic way to remove duplicates.
•
•
#Python #Programming #CodeTips #DataStructures
━━━━━━━━━━━━━━━
By: @DataScience4 ✨
Level up your Python code with more advanced tips. This part covers chaining comparisons, using sets for uniqueness, and powerful tools from the
collections module like Counter and defaultdict.x = 10
# Check if x is between 5 and 15 in a clean way
if 5 < x < 15:
print("x is in range.")
# Output: x is in range.
• Chaining Comparisons: Python allows you to chain comparison operators for more readable and concise range checks. This is equivalent to
(5 < x) and (x < 15).numbers = [1, 2, 2, 3, 4, 4, 4, 5]
# Use a set to quickly get unique elements
unique_numbers = list(set(numbers))
print(unique_numbers)
# Output: [1, 2, 3, 4, 5]
• Sets for Uniqueness: Sets are unordered collections of unique elements. Converting a list to a set and back is the fastest and most Pythonic way to remove duplicates.
from collections import Counter
words = ['apple', 'banana', 'apple', 'orange', 'banana', 'apple']
word_counts = Counter(words)
print(word_counts)
# Output: Counter({'apple': 3, 'banana': 2, 'orange': 1})
print(word_counts.most_common(1))
# Output: [('apple', 3)]
•
collections.Counter: A specialized dictionary subclass for counting hashable objects. It simplifies frequency counting tasks and provides useful methods like .most_common().from collections import defaultdict
data = [('fruit', 'apple'), ('fruit', 'banana'), ('veg', 'carrot')]
grouped_data = defaultdict(list)
for category, item in data:
grouped_data[category].append(item)
print(grouped_data)
# Output: defaultdict(<class 'list'>, {'fruit': ['apple', 'banana'], 'veg': ['carrot']})
•
collections.defaultdict: A dictionary that provides a default value for a non-existent key, avoiding KeyError. It's perfect for grouping items into lists or dictionaries without extra checks.#Python #Programming #CodeTips #DataStructures
━━━━━━━━━━━━━━━
By: @DataScience4 ✨
❤1
💡 Python
This guide covers Python's boolean values,
• Comparison Operators: Operators like
• Logical
• Logical
• Logical
• Truthiness: In a boolean context (like an
• Falsiness: Only a few specific values are
• Internally,
• This allows you to use them in mathematical calculations, a common feature in coding challenges.
#Python #Boolean #Programming #TrueFalse #CodingTips
━━━━━━━━━━━━━━━
By: @DataScience4 ✨
True & False: A Mini-GuideThis guide covers Python's boolean values,
True and False. We'll explore how they result from comparisons, are used with logical operators, and how other data types can be evaluated as "truthy" or "falsy".x = 10
y = 5
print(x > y)
print(x == 10)
print(y != 5)
# Output:
# True
# True
# False
• Comparison Operators: Operators like
>, ==, and != evaluate expressions and always return a boolean value: True or False.is_sunny = True
is_warm = False
print(is_sunny and is_warm)
print(is_sunny or is_warm)
print(not is_warm)
# Output:
# False
# True
# True
• Logical
and: Returns True only if both operands are true.• Logical
or: Returns True if at least one operand is true.• Logical
not: Inverts the boolean value (True becomes False, and vice-versa).# "Falsy" values evaluate to False
print(bool(0))
print(bool(""))
print(bool([]))
print(bool(None))
# "Truthy" values evaluate to True
print(bool(42))
print(bool("hello"))
# Output:
# False
# False
# False
# False
# True
# True
• Truthiness: In a boolean context (like an
if statement), many values are considered True ("truthy").• Falsiness: Only a few specific values are
False ("falsy"): 0, None, and any empty collection (e.g., "", [], {}).# Booleans can be treated as integers
sum_result = True + True + False
print(sum_result)
product = True * 15
print(product)
# Output:
# 2
# 15
• Internally,
True is equivalent to the integer 1 and False is equivalent to 0.• This allows you to use them in mathematical calculations, a common feature in coding challenges.
#Python #Boolean #Programming #TrueFalse #CodingTips
━━━━━━━━━━━━━━━
By: @DataScience4 ✨
💡 Python Exam Cheatsheet
A quick review of core Python concepts frequently found in technical assessments and exams. This guide covers list comprehensions, dictionary methods,
• List Comprehension: A concise, one-line syntax for creating lists.
• The structure is
• The
• Dictionary
• The first argument is the key to look up.
• The optional second argument is the default value to return if the key does not exist.
• Using
• It returns a tuple
•
•
• This pattern allows a function to accept a variable number of arguments.
#Python #PythonExam #Programming #CodeCheatsheet #LearnPython
━━━━━━━━━━━━━━━
By: @DataScience4 ✨
A quick review of core Python concepts frequently found in technical assessments and exams. This guide covers list comprehensions, dictionary methods,
enumerate, and flexible function arguments.# Create a list of squares for even numbers from 0 to 9
squares = [x**2 for x in range(10) if x % 2 == 0]
print(squares)
# Output:
# [0, 4, 16, 36, 64]
• List Comprehension: A concise, one-line syntax for creating lists.
• The structure is
[expression for item in iterable if condition].• The
if condition part is optional and acts as a filter.student_scores = {'Alice': 95, 'Bob': 87}
# Safely get a score, providing a default value if the key is missing
charlie_score = student_scores.get('Charlie', 'Not Found')
alice_score = student_scores.get('Alice', 'Not Found')
print(f"Alice: {alice_score}")
print(f"Charlie: {charlie_score}")
# Output:
# Alice: 95
# Charlie: Not Found• Dictionary
.get() Method: Safely access a dictionary key without causing a KeyError.• The first argument is the key to look up.
• The optional second argument is the default value to return if the key does not exist.
colors = ['red', 'green', 'blue']
for index, value in enumerate(colors):
print(f"Index: {index}, Value: {value}")
# Output:
# Index: 0, Value: red
# Index: 1, Value: green
# Index: 2, Value: blue
• Using
enumerate: The Pythonic way to loop over an iterable when you need both the index and the value.• It returns a tuple
(index, value) for each item in the sequence.def process_data(*args, **kwargs):
print(f"Positional args (tuple): {args}")
print(f"Keyword args (dict): {kwargs}")
process_data(1, 'hello', 3.14, user='admin', status='active')
# Output:
# Positional args (tuple): (1, 'hello', 3.14)
# Keyword args (dict): {'user': 'admin', 'status': 'active'}
•
*args: Collects all extra positional arguments into a tuple.•
**kwargs: Collects all extra keyword arguments into a dictionary.• This pattern allows a function to accept a variable number of arguments.
#Python #PythonExam #Programming #CodeCheatsheet #LearnPython
━━━━━━━━━━━━━━━
By: @DataScience4 ✨
Please open Telegram to view this post
VIEW IN TELEGRAM
100 Python Examples: A Step-by-Step Guide
#Python #Programming #Tutorial #LearnPython
Part 1: The Basics (Examples 1-15)
#1. Print "Hello, World!"
The classic first program.
#2. Variables and Strings
Store text in a variable and print it.
#3. Integer Variable
Store a whole number.
#4. Float Variable
Store a number with a decimal point.
#5. Boolean Variable
Store a value that is either
#6. Get User Input
Use the
#7. Simple Calculation
Perform a basic arithmetic operation.
#8. Comments
Use
#9. Type Conversion (String to Integer)
Convert a user's input (which is a string) to an integer to perform math.
#10. String Concatenation
Combine multiple strings using the
#11. Multiple Assignment
Assign values to multiple variables in one line.
#12. The
Check the data type of a variable.
#13. Basic Arithmetic Operators
Demonstrates addition, subtraction, multiplication, and division.
#14. Floor Division and Modulus
#15. Exponentiation
Use
---
Part 2: String Manipulation (Examples 16-25)
#16. String Length
Use
#Python #Programming #Tutorial #LearnPython
Part 1: The Basics (Examples 1-15)
#1. Print "Hello, World!"
The classic first program.
print() is a function that outputs text to the console.print("Hello, World!")Hello, World!
#2. Variables and Strings
Store text in a variable and print it.
message = "I am learning Python."
print(message)
I am learning Python.
#3. Integer Variable
Store a whole number.
age = 30
print("My age is:", age)
My age is: 30
#4. Float Variable
Store a number with a decimal point.
price = 19.99
print("The price is:", price)
The price is: 19.99
#5. Boolean Variable
Store a value that is either
True or False.is_learning = True
print("Am I learning?", is_learning)
Am I learning? True
#6. Get User Input
Use the
input() function to get information from the user.name = input("What is your name? ")
print("Hello, " + name)What is your name? Alice
Hello, Alice
#7. Simple Calculation
Perform a basic arithmetic operation.
a = 10
b = 5
print(a + b)
15
#8. Comments
Use
# to add comments that Python will ignore.# This line calculates the area of a rectangle
length = 10
width = 5
area = length * width
print("Area is:", area)
Area is: 50
#9. Type Conversion (String to Integer)
Convert a user's input (which is a string) to an integer to perform math.
age_str = input("Enter your age: ")
age_int = int(age_str)
next_year_age = age_int + 1
print("Next year you will be:", next_year_age)Enter your age: 25
Next year you will be: 26
#10. String Concatenation
Combine multiple strings using the
+ operator.first_name = "John"
last_name = "Doe"
full_name = first_name + " " + last_name
print(full_name)
John Doe
#11. Multiple Assignment
Assign values to multiple variables in one line.
x, y, z = 10, 20, 30
print(x, y, z)
10 20 30
#12. The
type() FunctionCheck the data type of a variable.
num = 123
text = "hello"
pi = 3.14
print(type(num))
print(type(text))
print(type(pi))
<class 'int'>
<class 'str'>
<class 'float'>
#13. Basic Arithmetic Operators
Demonstrates addition, subtraction, multiplication, and division.
a = 15
b = 4
print("Addition:", a + b)
print("Subtraction:", a - b)
print("Multiplication:", a * b)
print("Division:", a / b)
Addition: 19
Subtraction: 11
Multiplication: 60
Division: 3.75
#14. Floor Division and Modulus
// for division that rounds down, and % for the remainder.a = 15
b = 4
print("Floor Division:", a // b)
print("Modulus (Remainder):", a % b)
Floor Division: 3
Modulus (Remainder): 3
#15. Exponentiation
Use
** to raise a number to a power.power = 3 ** 4 # 3 to the power of 4
print(power)
81
---
Part 2: String Manipulation (Examples 16-25)
#16. String Length
Use
len() to get the number of characters in a string.my_string = "Python is fun"
print(len(my_string))
13
❤1
Top 100 Python Interview Questions & Answers
#Python #InterviewQuestions #CodingInterview #Programming #PythonDeveloper
👇 👇 👇 👇
#Python #InterviewQuestions #CodingInterview #Programming #PythonDeveloper
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1
Top 100 Python Interview Questions & Answers
#Python #InterviewQuestions #CodingInterview #Programming #PythonDeveloper
Part 1: Core Python Fundamentals (Q1-20)
#1. Is Python a compiled or an interpreted language?
A: Python is an interpreted language. The Python interpreter reads and executes the source code line by line, without requiring a separate compilation step. This makes development faster but can result in slower execution compared to compiled languages like C++.
#2. What is the GIL (Global Interpreter Lock)?
A: The GIL is a mutex (a lock) that allows only one thread to execute Python bytecode at a time within a single process. This means even on a multi-core processor, a single Python process cannot run threads in parallel. It simplifies memory management but is a performance bottleneck for CPU-bound multithreaded programs.
#3. What is the difference between Python 2 and Python 3?
A: Key differences include:
•
• Integer Division: In Python 2,
• Unicode: In Python 3, strings are Unicode (UTF-8) by default. In Python 2, you had to explicitly use
#4. What are mutable and immutable data types in Python?
A:
• Mutable: Objects whose state or contents can be changed after creation. Examples:
• Immutable: Objects whose state cannot be changed after creation. Examples:
#5. How is memory managed in Python?
A: Python uses a private heap to manage memory. A built-in garbage collector automatically reclaims memory from objects that are no longer in use. The primary mechanism is reference counting, where each object tracks the number of references to it. When the count drops to zero, the object is deallocated.
#6. What is the difference between
A:
•
•
#7. What is PEP 8?
A: PEP 8 (Python Enhancement Proposal 8) is the official style guide for Python code. It provides conventions for writing readable and consistent Python code, covering aspects like naming conventions, code layout, and comments.
#8. What is the difference between a
A:
•
•
#9. What are namespaces in Python?
A: A namespace is a system that ensures all names in a program are unique and can be used without conflict. It's a mapping from names to objects. Python has different namespaces: built-in, global, and local.
#Python #InterviewQuestions #CodingInterview #Programming #PythonDeveloper
Part 1: Core Python Fundamentals (Q1-20)
#1. Is Python a compiled or an interpreted language?
A: Python is an interpreted language. The Python interpreter reads and executes the source code line by line, without requiring a separate compilation step. This makes development faster but can result in slower execution compared to compiled languages like C++.
#2. What is the GIL (Global Interpreter Lock)?
A: The GIL is a mutex (a lock) that allows only one thread to execute Python bytecode at a time within a single process. This means even on a multi-core processor, a single Python process cannot run threads in parallel. It simplifies memory management but is a performance bottleneck for CPU-bound multithreaded programs.
#3. What is the difference between Python 2 and Python 3?
A: Key differences include:
•
print: In Python 2, print is a statement (print "hello"). In Python 3, it's a function (print("hello")).• Integer Division: In Python 2,
5 / 2 results in 2 (floor division). In Python 3, it results in 2.5 (true division).• Unicode: In Python 3, strings are Unicode (UTF-8) by default. In Python 2, you had to explicitly use
u"unicode string".#4. What are mutable and immutable data types in Python?
A:
• Mutable: Objects whose state or contents can be changed after creation. Examples:
list, dict, set.• Immutable: Objects whose state cannot be changed after creation. Examples:
int, float, str, tuple, frozenset.# Mutable example
my_list = [1, 2, 3]
my_list[0] = 99
print(my_list)
[99, 2, 3]
#5. How is memory managed in Python?
A: Python uses a private heap to manage memory. A built-in garbage collector automatically reclaims memory from objects that are no longer in use. The primary mechanism is reference counting, where each object tracks the number of references to it. When the count drops to zero, the object is deallocated.
#6. What is the difference between
is and ==?A:
•
== (Equality): Checks if the values of two operands are equal.•
is (Identity): Checks if two variables point to the exact same object in memory.list_a = [1, 2, 3]
list_b = [1, 2, 3]
list_c = list_a
print(list_a == list_b) # True, values are the same
print(list_a is list_b) # False, different objects in memory
print(list_a is list_c) # True, same object in memory
True
False
True
#7. What is PEP 8?
A: PEP 8 (Python Enhancement Proposal 8) is the official style guide for Python code. It provides conventions for writing readable and consistent Python code, covering aspects like naming conventions, code layout, and comments.
#8. What is the difference between a
.py and a .pyc file?A:
•
.py: This is the source code file you write.•
.pyc: This is the compiled bytecode. When you run a Python script, the interpreter compiles it into bytecode (a lower-level, platform-independent representation) and saves it as a .pyc file to speed up subsequent executions.#9. What are namespaces in Python?
A: A namespace is a system that ensures all names in a program are unique and can be used without conflict. It's a mapping from names to objects. Python has different namespaces: built-in, global, and local.
def process_data(data):
if data is None:
return "Error: No data provided."
if not isinstance(data, list) or not data:
return "Error: Invalid data format."
# ... logic is now at the top level ...
print("Processing data...")
return "Done"
#Python #CleanCode #Programming #BestPractices #CodingTips
━━━━━━━━━━━━━━━
By: @DataScience4 ✨
9. Use
(It's safer and more robust than
Cluttered Way (brittle, fails on subclasses):
Clean Way (correctly handles subclasses):
10. Use the
(Clearly separates the code that runs on success from the
Cluttered Way:
Clean Way:
#Python #CleanCode #Programming #BestPractices #CodeReadability
━━━━━━━━━━━━━━━
By: @DataScience4 ✨
isinstance() for Type Checking(It's safer and more robust than
type() because it correctly handles inheritance.)Cluttered Way (brittle, fails on subclasses):
class MyList(list): pass
my_list_instance = MyList()
if type(my_list_instance) == list:
print("It's a list!") # This will not print
Clean Way (correctly handles subclasses):
class MyList(list): pass
my_list_instance = MyList()
if isinstance(my_list_instance, list):
print("It's an instance of list or its subclass!") # This prints
10. Use the
else Block in try/except(Clearly separates the code that runs on success from the
try block being monitored.)Cluttered Way:
try:
data = my_ risky_operation()
# It's not clear if this next part can also raise an error
process_data(data)
except ValueError:
handle_error()
Clean Way:
try:
data = my_risky_operation()
except ValueError:
handle_error()
else:
# This code only runs if the 'try' block succeeds with NO exception
process_data(data)
#Python #CleanCode #Programming #BestPractices #CodeReadability
━━━━━━━━━━━━━━━
By: @DataScience4 ✨
❤10👍3
Learning Common Algorithms with Python
• This lesson covers fundamental algorithms implemented in Python. Understanding these concepts is crucial for building efficient software. We will explore searching, sorting, and recursion.
• Linear Search: This is the simplest search algorithm. It sequentially checks each element of the list until a match is found or the whole list has been searched. Its time complexity is O(n).
• Binary Search: A much more efficient search algorithm, but it requires the list to be sorted first. It works by repeatedly dividing the search interval in half. Its time complexity is O(log n).
• Bubble Sort: A simple sorting algorithm that repeatedly steps through the list, compares adjacent elements and swaps them if they are in the wrong order. The process is repeated until the list is sorted. Its time complexity is O(n^2).
• Recursion (Factorial): Recursion is a method where a function calls itself to solve a problem. A classic example is calculating the factorial of a number (
#Python #Algorithms #DataStructures #Coding #Programming #LearnToCode
━━━━━━━━━━━━━━━
By: @DataScience4 ✨
• This lesson covers fundamental algorithms implemented in Python. Understanding these concepts is crucial for building efficient software. We will explore searching, sorting, and recursion.
• Linear Search: This is the simplest search algorithm. It sequentially checks each element of the list until a match is found or the whole list has been searched. Its time complexity is O(n).
def linear_search(data, target):
for i in range(len(data)):
if data[i] == target:
return i # Return the index of the found element
return -1 # Return -1 if the element is not found
# Example
my_list = [4, 2, 7, 1, 9, 5]
print(f"Linear Search: Element 7 found at index {linear_search(my_list, 7)}")
• Binary Search: A much more efficient search algorithm, but it requires the list to be sorted first. It works by repeatedly dividing the search interval in half. Its time complexity is O(log n).
def binary_search(sorted_data, target):
low = 0
high = len(sorted_data) - 1
while low <= high:
mid = (low + high) // 2
if sorted_data[mid] < target:
low = mid + 1
elif sorted_data[mid] > target:
high = mid - 1
else:
return mid # Element found
return -1 # Element not found
# Example
my_sorted_list = [1, 2, 4, 5, 7, 9]
print(f"Binary Search: Element 7 found at index {binary_search(my_sorted_list, 7)}")
• Bubble Sort: A simple sorting algorithm that repeatedly steps through the list, compares adjacent elements and swaps them if they are in the wrong order. The process is repeated until the list is sorted. Its time complexity is O(n^2).
def bubble_sort(data):
n = len(data)
for i in range(n):
# Last i elements are already in place
for j in range(0, n-i-1):
if data[j] > data[j+1]:
# Swap the elements
data[j], data[j+1] = data[j+1], data[j]
return data
# Example
my_list_to_sort = [4, 2, 7, 1, 9, 5]
print(f"Bubble Sort: Sorted list is {bubble_sort(my_list_to_sort)}")
• Recursion (Factorial): Recursion is a method where a function calls itself to solve a problem. A classic example is calculating the factorial of a number (
n!). It must have a base case to stop the recursion.def factorial(n):
# Base case: if n is 1 or 0, factorial is 1
if n == 0 or n == 1:
return 1
# Recursive step: n * factorial of (n-1)
else:
return n * factorial(n - 1)
# Example
num = 5
print(f"Recursion: Factorial of {num} is {factorial(num)}")
#Python #Algorithms #DataStructures #Coding #Programming #LearnToCode
━━━━━━━━━━━━━━━
By: @DataScience4 ✨
❤1