In Python, the collections module offers specialized container datatypes that solve real-world coding challenges with elegance and efficiency. These tools are interview favorites for optimizing time complexity and writing clean, professional code! 💡
By: @DatascienceN🌟
#Python #CodingInterview #DataStructures #collections #Programming #TechJobs #Algorithm #LeetCode #DeveloperTips #CareerGrowth
import collections
# defaultdict - Eliminate key errors with auto-initialization
from collections import defaultdict
gradebook = defaultdict(int)
gradebook['Alice'] += 95
print(gradebook['Alice']) # Output: 95
print(gradebook['Bob']) # Output: 0
# defaultdict for grouping operations
anagrams = defaultdict(list)
words = ["eat", "tea", "tan"]
for w in words:
key = ''.join(sorted(w))
anagrams[key].append(w)
print(anagrams['aet']) # Output: ['eat', 'tea']
# Counter - Frequency analysis in one line
from collections import Counter
text = "abracadabra"
freq = Counter(text)
print(freq['a']) # Output: 5
print(freq.most_common(2)) # Output: [('a', 5), ('b', 2)]
# Counter arithmetic for problem-solving
inventory = Counter(apples=10, oranges=5)
sales = Counter(apples=3, oranges=2)
print(inventory - sales) # Output: Counter({'apples': 7, 'oranges': 3})
# namedtuple - Self-documenting data structures
from collections import namedtuple
Employee = namedtuple('Employee', 'name role salary')
dev = Employee('Alex', 'Developer', 95000)
print(dev.role) # Output: Developer
print(dev[2]) # Output: 95000
# deque - Optimal for BFS and sliding windows
from collections import deque
queue = deque([1, 2, 3])
queue.append(4)
queue.popleft()
print(queue) # Output: deque([2, 3, 4])
queue.rotate(1)
print(queue) # Output: deque([4, 2, 3])
# OrderedDict - Track insertion order (LRU cache essential)
from collections import OrderedDict
cache = OrderedDict()
cache['A'] = 1
cache['B'] = 2
cache.move_to_end('A')
cache.popitem(last=False)
print(list(cache.keys())) # Output: ['B', 'A']
# ChainMap - Manage layered configurations
from collections import ChainMap
defaults = {'theme': 'dark', 'font': 'Arial'}
user_prefs = {'theme': 'light'}
settings = ChainMap(user_prefs, defaults)
print(settings['font']) # Output: Arial
# Practical Interview Tip: Anagram detection
print(Counter("secure") == Counter("rescue")) # Output: True
# Pro Tip: Sliding window maximum
def max_sliding_window(nums, k):
dq, result = deque(), []
for i, n in enumerate(nums):
while dq and nums[dq[-1]] < n:
dq.pop()
dq.append(i)
if dq[0] == i - k:
dq.popleft()
if i >= k - 1:
result.append(nums[dq[0]])
return result
print(max_sliding_window([1,3,-1,-3,5,3,6,7], 3)) # Output: [3,3,5,5,6,7]
# Expert Move: Custom LRU Cache implementation
class LRUCache:
def __init__(self, capacity):
self.cache = OrderedDict()
self.capacity = capacity
def get(self, key):
if key not in self.cache:
return -1
self.cache.move_to_end(key)
return self.cache[key]
def put(self, key, value):
if key in self.cache:
del self.cache[key]
self.cache[key] = value
if len(self.cache) > self.capacity:
self.cache.popitem(last=False)
cache = LRUCache(2)
cache.put(1, 10)
cache.put(2, 20)
cache.get(1)
cache.put(3, 30)
print(list(cache.cache.keys())) # Output: [2, 1, 3] → Wait! Correction: Should be [1, 3] (capacity=2 triggers eviction of '2')
# Bonus: Multiset operations with Counter
primes = Counter([2, 3, 5, 7])
odds = Counter([1, 3, 5, 7, 9])
print(primes | odds) # Output: Counter({3:1, 5:1, 7:1, 2:1, 9:1, 1:1})
By: @DatascienceN🌟
#Python #CodingInterview #DataStructures #collections #Programming #TechJobs #Algorithm #LeetCode #DeveloperTips #CareerGrowth
❤1
# Interview Power Move: Parallel Merging
from concurrent.futures import ThreadPoolExecutor
from PyPDF2 import PdfMerger
def parallel_merge(pdf_list, output, max_workers=4):
chunks = [pdf_list[i::max_workers] for i in range(max_workers)]
temp_files = []
def merge_chunk(chunk, idx):
temp = f"temp_{idx}.pdf"
merger = PdfMerger()
for pdf in chunk:
merger.append(pdf)
merger.write(temp)
return temp
with ThreadPoolExecutor() as executor:
temp_files = list(executor.map(merge_chunk, chunks, range(max_workers)))
# Final merge of chunks
final_merger = PdfMerger()
for temp in temp_files:
final_merger.append(temp)
final_merger.write(output)
parallel_merge(["doc1.pdf", "doc2.pdf", ...], "parallel_merge.pdf")
# Pro Tip: Validate PDFs before merging
from PyPDF2 import PdfReader
def is_valid_pdf(path):
try:
with open(path, "rb") as f:
reader = PdfReader(f)
return len(reader.pages) > 0
except:
return False
valid_pdfs = [f for f in pdf_files if is_valid_pdf(f)]
merger.append(valid_pdfs) # Only merge valid files
# Real-World Case Study: Invoice Processing Pipeline
import glob
from PyPDF2 import PdfMerger
def process_monthly_invoices():
# 1. Download invoices from SFTP
download_invoices("sftp://vendor.com/invoices/*.pdf")
# 2. Validate and sort
invoices = sorted(
[f for f in glob.glob("invoices/*.pdf") if is_valid_pdf(f)],
key=lambda x: extract_invoice_date(x)
)
# 3. Merge with cover page
merger = PdfMerger()
merger.append("cover_template.pdf")
for inv in invoices:
merger.append(inv, outline_item=get_client_name(inv))
# 4. Add metadata and encrypt
merger.add_metadata({"/InvoiceCount": str(len(invoices))})
merger.encrypt(owner_pwd="finance_team_2023")
merger.write(f"Q3_Invoices_{datetime.now().strftime('%Y%m')}.pdf")
# 5. Upload to secure storage
upload_to_s3("secure-bucket/processed/", "Q3_Invoices.pdf")
process_monthly_invoices()
By: https://t.iss.one/DataScience4
#Python #PDFProcessing #DocumentAutomation #PyPDF2 #CodingInterview #BackendDevelopment #FileHandling #DataEngineering #TechJobs #Programming #SystemDesign #DeveloperTips #CareerGrowth #CloudComputing #Docker #Microservices #Productivity #TechTips #Python3 #SoftwareEngineering
Telegram
Python | Algorithms | Data Structures | Cyber Security | Networks
This channel is for Programmers, Coders, Software Engineers.
1) Python
2) django
3) python frameworks
4) Data Structures
5) Algorithms
6) DSA
Admin: @Hussein_Sheikho
Ad & Earn money form your channel:
https://telega.io/?r=nikapsOH
1) Python
2) django
3) python frameworks
4) Data Structures
5) Algorithms
6) DSA
Admin: @Hussein_Sheikho
Ad & Earn money form your channel:
https://telega.io/?r=nikapsOH
Forwarded from Data Science Machine Learning Data Analysis
In Python, building AI-powered Telegram bots unlocks massive potential for image generation, processing, and automation—master this to create viral tools and ace full-stack interviews! 🤖
Learn more: https://hackmd.io/@husseinsheikho/building-AI-powered-Telegram-bots
https://t.iss.one/DataScienceM🦾
# Basic Bot Setup - The foundation (PTB v20+ Async)
from telegram.ext import Application, CommandHandler, MessageHandler, filters
async def start(update, context):
await update.message.reply_text(
"✨ AI Image Bot Active!\n"
"/generate - Create images from text\n"
"/enhance - Improve photo quality\n"
"/help - Full command list"
)
app = Application.builder().token("YOUR_BOT_TOKEN").build()
app.add_handler(CommandHandler("start", start))
app.run_polling()
# Image Generation - DALL-E Integration (OpenAI)
import openai
from telegram.ext import ContextTypes
openai.api_key = os.getenv("OPENAI_API_KEY")
async def generate(update: Update, context: ContextTypes.DEFAULT_TYPE):
if not context.args:
await update.message.reply_text("❌ Usage: /generate cute robot astronaut")
return
prompt = " ".join(context.args)
try:
response = openai.Image.create(
prompt=prompt,
n=1,
size="1024x1024"
)
await update.message.reply_photo(
photo=response['data'][0]['url'],
caption=f"🎨 Generated: *{prompt}*",
parse_mode="Markdown"
)
except Exception as e:
await update.message.reply_text(f"🔥 Error: {str(e)}")
app.add_handler(CommandHandler("generate", generate))
Learn more: https://hackmd.io/@husseinsheikho/building-AI-powered-Telegram-bots
#Python #TelegramBot #AI #ImageGeneration #StableDiffusion #OpenAI #MachineLearning #CodingInterview #FullStack #Chatbots #DeepLearning #ComputerVision #Programming #TechJobs #DeveloperTips #CareerGrowth #CloudComputing #Docker #APIs #Python3 #Productivity #TechTips
https://t.iss.one/DataScienceM
Please open Telegram to view this post
VIEW IN TELEGRAM