Zen of Python
20.2K subscribers
1.2K photos
161 videos
32 files
3.15K links
Полный Дзен Пайтона в одном канале

Разместить рекламу: @tproger_sales_bot

Правила общения: https://tprg.ru/rules

Другие каналы: @tproger_channels

Сайт: https://tprg.ru/site

Регистрация в перечне РКН: https://tprg.ru/xZOL
Download Telegram
Простыми словами: Структуры данных в Python

Мы немного забежали вперёд и уже разобрали две популярных структуры данных — BST и B-Tree. Но давайте немного откатимся назад и кратко разберём какие вообще структуры данных используются в Python помимо деревьев и чем они отличаются.

1. Списки (Lists)
Списки — это упорядоченные изменяемые коллекции, которые могут содержать элементы любого типа. Они поддерживают произвольный доступ по индексу и предоставляют множество встроенных методов для манипуляции элементами.

my_list = [1, 2, 3, "hello", 4.5]


2. Кортежи (Tuples)
Кортежи — это упорядоченные неизменяемые коллекции. После создания их элементы нельзя изменить. Кортежи полезны для хранения объектов, которые не должны изменяться в ходе выполнения программы.

my_tuple = (1, 2, 3, "hello", 4.5)


3. Словари (Dictionaries)
Словари — это неупорядоченные коллекции пар ключ-значение. Они позволяют быстро находить значение по ключу и часто используются для представления разреженных данных или объектов с именованными полями.

my_dict = {"name": "Alice", "age": 25, "city": "New York"}


4. Множества (Sets)
Множества — это неупорядоченные коллекции уникальных элементов. Они поддерживают операции над множествами, такие как объединение, пересечение и разность, и полезны для быстрого удаления дублирующихся элементов из коллекций.

my_set = {1, 2, 3, 4, 5}


5. Очереди (Queues)
Очереди обеспечивают порядок очередности элементов «первым пришел — первым вышел» (FIFO). В Python можно использовать модуль collections.deque для эффективного выполнения операций на концах очереди.

from collections import deque
my_queue = deque([1, 2, 3, 4, 5])
my_queue.append(6)
my_queue.popleft()


6. Стек (Stacks)
Стек обеспечивает порядок «последним пришел — первым вышел» (LIFO). В Python стек можно реализовать с помощью списка, используя методы append() и pop().

my_stack = [1, 2, 3, 4, 5]
my_stack.append(6)
my_stack.pop()


7. Двусвязные списки (Linked Lists)
Двусвязные списки состоят из узлов, каждый из которых содержит значение и ссылки на следующий и предыдущий узлы. Они обеспечивают эффективное добавление и удаление элементов, но требуют больше памяти, чем массивы.

class Node:
def __init__(self, data):
self.data = data
self.next = None
self.prev = None

class DoublyLinkedList:
def __init__(self):
self.head = None


8. Деревья (Trees)
Деревья используются для представления иерархических данных. Один из популярных видов деревьев — бинарное дерево поиска (BST), где каждый узел имеет не более двух детей, а левое поддерево содержит значения меньше родительского узла, правое — больше.

class TreeNode:
def __init__(self, value):
self.value = value
self.left = None
self.right = None


9. Графы (Graphs)
Графы состоят из узлов и ребер, связывающих их. Они используются для представления сетевых структур, таких как социальные сети, маршруты в транспорте и т.д. В Python графы можно реализовать с помощью словарей или использовать библиотеки, такие как NetworkX.

# Пример простого графа с использованием словаря
graph = {
'A': ['B', 'C'],
'B': ['A', 'D', 'E'],
'C': ['A', 'F'],
'D': ['B'],
'E': ['B', 'F'],
'F': ['C', 'E']
}


Эти структуры данных обеспечивают различные способы хранения, организации и манипуляции данными в Python и играют ключевую роль в разработке эффективных алгоритмов и приложений. Выбор подходящей структуры данных зависит от конкретной задачи и требований к производительности.

Про что ещё рассказать в рубрике простыми словами или какую тему разобрать подробнее? Напишите в комментарии

#простымисловами #структурыданных
👍62❤‍🔥1