Химия в бутылочке⚗️
15.7K subscribers
42 photos
14 videos
1 file
266 links
Пишу о химии простым языком, делаю науку ближе, избавлю от хемофобии и всё на одном канале!

👩‍🔬Автор блога: @ya_chimik
Реклама: @zubar89
Download Telegram
Страдания ради науки☠️

В настоящее время мы воспринимаем многие законы природы как нечто привычное и обыденное. Мы смотрим на таблицу Менделеева, не размышляя над тем, как были открыты те или иные химические элементы. Мы видим солнечный свет, заливающий комнату по утрам, не задумываясь о его природе, громадном пути, который он преодолел, и о том, почему мы его вообще видим. А ведь всего пару веков назад эти мысли не давали покоя учёным, имена которых нам хорошо известны.

Многим кажется, что наука — это своего рода развлечение, приятным результатом которого становятся гениальные открытия. Вот только очень часто поиск истины превращался в причинение вреда собственному организму. Сегодня я хочу поделиться с тобой историями трёх ученых, пожертвовавших свои здоровьем во имя науки.

Гениальность Исаака Ньютона порой не останавливала его от совершения весьма глупых и опасных поступков. В своей лаборатории Ньютон, вырезав из слоновой кости тонкий изогнутый зонд, запускал его себе в глаз и давил им на заднюю сторону глазного яблока, чтобы понять, почему мы вообще видим окружающий мир.👁 В другой период своих научных интересов Ньютон внимательно смотрел на солнце столько, сколько мог выдержать, чтобы выяснить, как это отразится на его зрении. Итогом опыта стало длительное восстановление в условиях кромешной темноты. Скорее всего, благодаря этим экспериментам в дальнейшем было тщательно исследовано негативное влияние прямых солнечных лучей на органы зрения.

Шведский химик Карл Шееле является первооткрывателем многих химических соединений. За его именем скрывается обнаружение кислорода, фтора и марганца, получение винной, молочной и щавелевой кислот, а также привычной для нас "марганцовки" и целого списка газов. В современных справочниках в описании свойств напротив многих соединений указывается их вкус и запах. Есть идеи, откуда учёные знают о вкусе ядовитых веществ?🧪 Думаю, тут не обошлось без заслуг Карла Шееле, курьезной страстью которого была тяга пробовать на вкус всё, с чем он имел дело. Он пробовал токсичные соли ртути, смертельно ядовитые цианиды и многие другие опасные для здоровья вещества. К сожалению, эта страсть обернулась смертью — учёного нашли мертвым на своем рабочем месте в окружении массы ядовитых реактивов в день его свадьбы.

И третья история связана с именем Марии Склодовской-Кюри, которая совместно с мужем, Пьером Кюри, и Анри Беккерелем впервые исследовала явление радиоактивности. Открытие радиоактивности стало переломным моментом в науке прошлого столетия, благодаря чему мы сейчас используем энергию атомных электростанций и исследуем наш организм с помощью рентгенографии.💡 Но история Марии Склодовской-Кюри так же показала, насколько опасным может быть влияние радиации на живой организм. Постоянно получая смертельные дозы излучения, Мария погибла от лучевой болезни и лейкемии. Страшная ирония открытия радиоактивности заключается в том, что по началу люди и учёные были уверены в положительном и даже лечебном влиянии гамма-излучения на живые ткани, и добровольно облучались колоссальными дозами радиации для укрепления здоровья.

Сейчас же для нас эти истории кажутся полным безумием, но они были объективной реальностью ушедших эпох. Пытливость ума и страсть к познанию — вот что объединяло учёных, принесших себя в жертву во имя открытий!

Понравился пост? Тыкайте❤️
​​Как делали первые фотографии?📸

Сейчас мы не можем представить свою жизнь без новых селфи в инстаграме, фотографий с друзьями во время редких встреч и фотосессий на рекламных постерах. Но путь к цифровой фотографии и её массовому распространению был очень сложен и интересен. А начиналось всё, как и положено, с химии👩🏻‍🔬

Еще в 1727 году немецкий химик Шульце обнаружил чувствительность солей серебра к свету — они темнели на свету и оставались без изменений в темноте💡Например, белый хлорид серебра темнел под действием света за счёт образования металлического серебра:
AgCl + свет → Ag + Cl₂

Вскоре был предложен способ закрепить полученное изображение с помощью раствора аммиака NH₃, который растворял не засвеченный хлорид серебра:
AgCl + NH₃ → Ag(NH₃)₂Cl
Поскольку хлорид серебра удалялся, дальнейшее действие света никак не влияло на изображение🙅‍♀️

Следующим этапом в развитии фотографии стало появление дагеротипии — фотопроцесса на основе светочувствительности йодида серебра AgI. В качестве основы под фотографию использовалась серебряная пластинка, обработанная парами йода. Её помещали в прототип фотоаппарата — камеру-обскура🎥

Что из себя представляла камера-обскура? Простой светонепроницаемый ящик с маленьким отверстием (от 0,1 до 5 мм в зависимости от фокусного расстояния), через которое внутрь проникали лучи света и попадали на экран с противоположной стороны🎇

Свет, падая на пластинку, покрытую йодидом серебра, вызывал его разложение по уже знакомой нам схеме:
AgI + свет → Ag + I₂
Полученное изображение было настолько слабым и незаметным, что человеческий глаз не мог его разглядеть, поэтому его называли скрытым🔍

Чтобы проявить скрытое изображение пластинку помешали в камеру, наполненную парами ртути Hg, которые образовывали амальгаму серебра. Изображение усиливалось за счёт увеличения массы, то есть происходило его проявление👁

Чтобы «закрепить» изображение, нужно было удалить светочувствительный йодид серебра с поверхности. Для этого со временем стали применять тиосульфат натрия Na₂S₂O₃, который быстро растворял йодид серебра:
AgI + Na₂S₂O₃ → Na₃Ag(S₂O₃)₂ + NaI

В результате засвеченные места пластинки, покрытые сплавом ртути и серебра, рассеивали отражённый свет, а в теневых участках отражались окружающие предметы, как в зеркале. Расположив готовый дагерротип напротив чёрного бархата, получали позитивное изображение — чёрно-белую картинку, где тени, как и положено, были черные, а светлые участки — белыми🔘

В дальнейшем была изобретена калотипия — способ получения изображения с использованием бумаги, пропитанной йодидом серебра. А уже потом стали использовать фотоэмульсиисмеси галогенидов серебра и фотографического желатина🎞

Дальнейшие открытий позволили ускорить и упростить процесс получения изображений, что в итоге привело к тиражированию и появлению моментальных фотографий🖨 Такие снимки не требовали манипуляций в лаборатории, а светочувствительное покрытие обрабатывалось встроенными химреактивами📷 После «полароидных» снимком наступила эра цифровой фотографии, развитие которой мы наблюдаем по сей день👀

И это лишь очень малая часть всей предыстории, скрытой за миниатюрными мощнейшими фотокамерами в наших смартфонах📱
Зачем лёд посыпают солью?❄️

Каждую зиму мы наблюдаем, как на утро после ночных заморозков сотрудники коммунальных служб усиленно посыпают реагентами застывшие дороги и тротуары. Интуитивно мы понимаем, для чего они это делают, но химические процессы, стоящие за методом борьбы с гололёдом, вряд ли были известны... До настоящего момента👩🏻‍🔬

В свойствах многокомпонентных систем есть интересная закономерность: температура плавления смеси веществ ниже, чем температура плавления каждого из чистых компонентов по отдельности. Мы знаем, что температура плавления льда 0℃. Температура, при которой плавится твердый хлорид натрия NaCl около 800℃. А если к воде постепенно добавлять соль, то вода начнёт превращаться в лёд при температуре заметно ниже 0℃. И достигнув определенной пропорции мы получим раствор, который превращается в лёд только при -21℃ (смотри диаграмму). Ощутимо, правда? На этом и основан метод борьбы с гололёдом💡

Если посыпать лёд солью, температура его плавления понизится, и он начнёт таять. Стоит учитывать, что если температура воздуха ниже -21℃, то лёд так и останется в твёрдом состоянии, ведь даже в смеси с солью он находится при температуре ниже точки замерзания. Поэтому, если вы видите, как в лютые заморозки кто-то посыпает лёд солью, то знайте, что он делает это зря. Данный способ работает в мягких зимних условиях, когда столбик термометра не опускается ниже определенной температуры🌡

Точка на диаграмме, которая отражает минимум температуры замерзания смеси, называется точкой эвтектики, а сама температура — криогидратной. Необходимым условием существования эвтектической точки является наличие трёх фаз: твердая соль, лёд и раствор данного состава. Поэтому температура не будет достигать минимального значения, если исчезнет одна из фаз (растворится вся соль или растает весь лёд)🤔

Помимо поваренной соли в качестве добавки можно использовать другие вещества, причём криогидратная температура будет меняться. Смесь в определенных пропорциях воды с калиевой селитрой KNO₃ замерзает при -10,9℃, с хлоридом магния MgCl₂ — почти при -34℃, а с хлоридами кальция CaCl₂ и железа FeCl₂ — при -55℃. Вы можете себе представить водный раствор, который замерзает при такой температуре? ❄️

На этом основано действие охлаждающих смесей — смесей льда с солями. Они буквально высасывают тепло из окружения. Их используют для поддержания низких температур в условиях эксперимента, или чтобы быстро охладить напитки🍸 При работе с такими смесями можно получить холодовые травмы, поэтому нужно быть осторожным.

К сожалению, использование зимой соляных реагентов отрицательно сказывается как на нашей жизни, так и на экологической обстановке. Соль вызывает коррозию многих поверхностей (автомобили, мосты, исторические памятники), портит обувь и сильно раздражает подушечки лап домашних любимцев во время прогулок🐾 Хлориды в большом количестве попадают в сточные воды и почву, что оказывает токсичное влияние на растения и другие организмы.
Йод vs Зелёнка⚔️

Несмотря на то, что в настоящее время широко используются более эффективные антисептические препараты, из нашей памяти никогда не уйдут пятна от зелёнки во время ветрянки и йодная сетка при кашле или простуде. Давайте разберёмся, что из себя представляют два самых популярных на постсоветском пространстве антисептика и чем они отличаются друг от друга👩🏻‍🔬

Антисептики — это вещества, предназначенные для предотвращения процессов гниения на поверхности открытых ран. Также они применяются для обработки рук медицинского персонала и инструментов перед контактом с пациентами🔪 Некоторые антисептики действительно способны уничтожать микробов, в то время как другие являются бактериостатическими и только предотвращают или подавляют их рост🦠

С точки зрения химического состава с медицинским йодом всё легко. Привычная для нас коричневатая жидкость в бутылочке представляет 5%-ный раствор йода I₂ в этиловом спирте с добавлением йодида калия KI, который увеличивает растворимость свободного йода⚱️

Антисептическое действие раствора йода основано на повреждении им клеточной стенки патогенных микроорганизмов. Он образует с белками клетки бактерий особые соединения — йодамины, — которые вызывают гибель микроорганизмов. Благодаря этому йод также уменьшает воспаления мягких тканей💊

Использование йодной сетки основано на место-раздражающем действии раствора йода — после нанесения его на кожу сосуды расширяются, кровь начинает более активно циркулировать, что приводит к облегчению боли и снятию отёка и воспаления. Например, йодную сеточку рисуют на местах многочисленных внутримышечных инъекций для ускорения рассасывания «шишек» после уколов💉

Об антисептических свойствах зелёнки узнали только в следующем столетии после её открытия😱 Изначально бриллиантовый зелёный был синтезирован в 1879 году как краситель для химической отрасли. Когда этим веществом попробовали окрасить микропрепараты, обнаружилось, что он вызывает гибель микробов🧪

Химическая формула зелёнки выглядит громоздко, но достаточно знать, что в основе механизма её действия лежит способность вытеснять водород из соединений, необходимых для обеспечения жизни бактерий. Так зелёнка блокирует дальнейший рост и развитие гнилостных микроорганизмов☠️

Если сравнивать раствор йода и бриллиантового зелёного между собой, то проявляется ряд существенных отличий. Йод эффективен в отношении широкого спектра бактерий, а зелёнка губительна лишь для грамположительных микроорганизмов. В то же время, у раствора йода больше противопоказаний к применению, а при избыточном нанесении он подсушивает и даже сжигает мягкие ткани. Зелёнка больше подходит для чувствительной кожи и почти не имеет противопоказаний, за исключением аллергических реакций👌🏻

Что немаловажно, раствор йода быстро впитывается и почти не оставляет следов, в то время как зелёнка способна оставить яркие акценты на вашей коже на ближайшие несколько дней🐸
Какая кислота самая сильная?

Азотная HNO₃? А может быть серная H₂SO₄? Какие еще кислоты ты помнишь с уроков химии?
👩🏻‍🏫

На самом деле, существуют соединения, кислотные свойства которых в тысячи раз сильнее концентрированной серной кислоты — их называют суперкислотами. Прочитав этот пост, ты узнаешь о некоторых из них.

Мы уже обсуждали меру кислотности — значение pH, — но при рассмотрении суперкислот бессмысленно опираться на водородный показатель, потому что он используется только для водных растворов и его диапазон строго ограничен. Для характеристики силы суперкислот была введена особая величина — параметр или функция кислотности Гаммета. Она и позволяет сравнивать свойства более экзотических соединений.

Для 100% серной кислоты функция кислотности составляет 11,93. Это значение является точкой отчёта — все вещества, для которых оно больше, относятся к суперкислотам💪

К таким соединениям относится хлорная кислота HClO₄. В чистом виде хлорная кислота является бесцветной дымящей жидкостью, но при длительном хранении она желтеет и становится взрывоопасной за счёт накопления оксида хлора Cl₂O₇. Соли хлорной кислоты используются в производстве взрывчатых веществ💥

Безводная фторсерная кислота HSO₃F еще сильнее чем серная и хлорная вместе взятые. Это желтая, едкая и токсичная жидкость, которая разрушает многие вещества, устойчивые под действием обычных кислот — органические волокна и металлические поверхности. Её водные смеси способны растворять даже стеклянную посуду 🍽

Карборановые кислоты являются одними из самых сильных суперкислот, известных человеку, — эти соединения сильнее серной кислоты почти в десятки тысяч раз. Первые карборановые кислоты синтезировали в 2005 году в университете Калифорнии при участии сотрудников Российской академии наук. Карборановые кислоты обладают структурой икосаэдра — многогранника с 20 гранями — и за счёт этого являются стабильными веществами, которые можно хранить и использовать в лабораторных условиях👩🏻‍🔬

«Магическая кислота»смесь уже упомянутой фторсерной кислоты HSO₃F и фторида сурьмы SbF₅. Эта смесь получила своё название после того, как на новогодней вечеринке один из сотрудников показал фокус с исчезновением свечи — он растворил её в «магической кислоте»🧞‍♀️. Исследование показало, что кислота настолько сильная, что способна расщепить молекулы парафинов, из которых состоит свеча. Оказалось, что она более чем в миллион раз сильнее, чем серная.

Существуют и многие другие суперкислоты, каждая из которых представляют интерес для науки и производства. С их помощью удаётся запустить те реакции, которые или не идут совсем🙅‍♀️, или требуют экстремальных условий🤷‍♀️.

Желаю тебе отличного дня! И помни, что серная кислота далеко не самая сильная 👀
Как защитить себя от солнца?🌞

С приходом солнечных дней у многих возникает вопрос — как правильно защитить кожу от УФ-излучения? Давайте выясним, какие бывают солнцезащитные средства, по какому принципу они работают и что такое SPF?

Озоновый слой, конечно, защищает нас от самого опасного спектра солнечного излучения, но до поверхности Земли доходят два типа УФ-лучей: малая часть UVB- и практически полностью UVA-лучи. Под воздействием первых наша кожа краснеет и даже может получить солнечный ожог, а вторые проникают в кожу глубже, ускоряя процесс старения и разрушая её изнутри💥

Существует два типа солнцезащитных фильтров, используемых в косметике: физический и химический.

В кремах на основе физических фильтров частицы минералов действуют как зеркало на поверхности кожи, отражая UVB- и UVA-лучи. Самые распространённые физические фильтры это диоксид титана TiO₂ (Titanium Dioxide) и оксид цинка ZnO (Zinc Oxide). Средства на их основе редко вызывают раздражение и подходят для чувствительной и детской кожи. Но к сожалению, они часто оставляют белый налёт после нанесения👻

В средствах на основе химических фильтров специальные вещества проникают в поверхностный слой кожи и преобразуют солнечное излучение в безопасную тепловую энергию. В составе эти компоненты вы сможете встретить под названиями авобензон (avobenzone), мексорил (ecamsule/mexoryl SX), тиносорб (tinosorb), оксибензон (oxybenzone) и другие.

Такие фильтры отлично работают даже в небольшой концентрации, равномерно распределяются по коже и не оставляют следов. Но их недостатками являются возможные аллергические реакции и недостаточная эффективность против всего спектра УФ-излучения🌤

Поэтому для максимальной защиты от солнца лучше использовать средства, в которых сочетаются физические и химические фильтры — именно такие сейчас встречаются всё чаще и чаще👍🏻

А теперь о том, что такое SPF? Фактор защиты от солнца — SPF — рассчитывается на основании того, сколько времени мы можем провести на солнце, когда наша кожа защищена кремом, до первых признаков загара (покраснения) по сравнению с кожей без крема. Если санскрин имеет SPF 30, то кожа покраснеет в 30 раз медленнее, чем если бы на ней вообще не было средства👙

Важно отметить, что SPF разных средств не складываются, а считаются по высшему. Например, если вы нанесли сначала SPF 50, а потом SPF 30, то фактор защиты так и останется на отметке 50.

Но большой SPF нам в большинстве случаев и не нужен. Средство с SPF 30 уже блокирует 97% солнечного излучения. Но ни один крем не защищает на 100%. Так что разница между SPF 15, SPF 30 и SPF 50 в целом не такая уж большая☀️

Главная ошибка, которую допускают при использовании солнцезащитных средств, — это недостаточное количество наносимого крема. Рекомендуемая плотность покрытия — 2 мг средства на см² кожи (около половины чайной ложки на лицо ). И не забывайте обязательно смывать его в конце дня🙌🏻

А если вам кажется, что защита от солнца — это бесполезное занятие, то уточню, что помимо фотостарения УФ-излучение значительно повышает риск развития меланомы и других злокачественных образований на коже👁

Наслаждайтесь солнечными днями без риска для здоровья😌
Страдания ради науки☠️

В настоящее время мы воспринимаем многие законы природы как нечто привычное и обыденное. Мы смотрим на таблицу Менделеева, не размышляя над тем, как были открыты те или иные химические элементы. Мы видим солнечный свет, заливающий комнату по утрам, не задумываясь о его природе, громадном пути, который он преодолел, и о том, почему мы его вообще видим. А ведь всего пару веков назад эти мысли не давали покоя учёным, имена которых нам хорошо известны.

Многим кажется, что наука — это своего рода развлечение, приятным результатом которого становятся гениальные открытия. Вот только очень часто поиск истины превращался в причинение вреда собственному организму. Сегодня я хочу поделиться с тобой историями трёх ученых, пожертвовавших свои здоровьем во имя науки.

Гениальность Исаака Ньютона порой не останавливала его от совершения весьма глупых и опасных поступков. В своей лаборатории Ньютон, вырезав из слоновой кости тонкий изогнутый зонд, запускал его себе в глаз и давил им на заднюю сторону глазного яблока, чтобы понять, почему мы вообще видим окружающий мир.👁 В другой период своих научных интересов Ньютон внимательно смотрел на солнце столько, сколько мог выдержать, чтобы выяснить, как это отразится на его зрении. Итогом опыта стало длительное восстановление в условиях кромешной темноты. Скорее всего, благодаря этим экспериментам в дальнейшем было тщательно исследовано негативное влияние прямых солнечных лучей на органы зрения.

Шведский химик Карл Шееле является первооткрывателем многих химических соединений. За его именем скрывается обнаружение кислорода, фтора и марганца, получение винной, молочной и щавелевой кислот, а также привычной для нас "марганцовки" и целого списка газов. В современных справочниках в описании свойств напротив многих соединений указывается их вкус и запах. Есть идеи, откуда учёные знают о вкусе ядовитых веществ?🧪 Думаю, тут не обошлось без заслуг Карла Шееле, курьезной страстью которого была тяга пробовать на вкус всё, с чем он имел дело. Он пробовал токсичные соли ртути, смертельно ядовитые цианиды и многие другие опасные для здоровья вещества. К сожалению, эта страсть обернулась смертью — учёного нашли мертвым на своем рабочем месте в окружении массы ядовитых реактивов в день его свадьбы.

И третья история связана с именем Марии Склодовской-Кюри, которая совместно с мужем, Пьером Кюри, и Анри Беккерелем впервые исследовала явление радиоактивности. Открытие радиоактивности стало переломным моментом в науке прошлого столетия, благодаря чему мы сейчас используем энергию атомных электростанций и исследуем наш организм с помощью рентгенографии.💡 Но история Марии Склодовской-Кюри так же показала, насколько опасным может быть влияние радиации на живой организм. Постоянно получая смертельные дозы излучения, Мария погибла от лучевой болезни и лейкемии. Страшная ирония открытия радиоактивности заключается в том, что по началу люди и учёные были уверены в положительном и даже лечебном влиянии гамма-излучения на живые ткани, и добровольно облучались колоссальными дозами радиации для укрепления здоровья.

Сейчас же для нас эти истории кажутся полным безумием, но они были объективной реальностью ушедших эпох. Пытливость ума и страсть к познанию — вот что объединяло учёных, принесших себя в жертву во имя открытий!
Метастабильные состояния ⚗️

Все мы знаем, что вода встречается в трёх привычных нам агрегатных состояниях: твёрдом, жидком и газообразном. Но сегодня я хочу поделиться чем-то более экзотичным — рассказать вам о метастабильных состояниях🌊

Химические и физические системы в природе встречаются в нескольких типах состояний: стабильное, нестабильное и метастабильное. Каждая система из нестабильного состояния непременно стремится перейти в стабильное. В стабильном состоянии она может находиться сколь угодно долго🕰

Метастабильное состояние — это «псевдоустойчивое» равновесие, устойчивость которого нарушается при появлении внешнего воздействия

Представьте себе сани, которые катятся с горки🛷 На её вершине у самого спуска сани находятся в нестабильном состоянии — они непременно начинают съезжать вниз. Но если посреди горки есть небольшое плато, скорее всего, сани остановятся на нём. Эту точку можно ассоциировать с метастабильным состоянием. Если подтолкнуть сани, они поедут дальше вниз по склону, пока не спустятся до конца и не остановятся, достигнув стабильного состояния🗻

А теперь к химии. Будем проводить мысленные эксперименты. Возьмём сосуд с водой и будем его нагревать. Мы знаем, что при атмосферном давлении вода закипает при 100℃ и немедленно превращается в пар. Но далеко не всегда бывает так. Из-за трудности фазового перехода — превращения жидкости в пар — мы можем получить перегретую жидкость, то есть такую, которая нагрета выше температуры кипения. В лабораторных условиях можно получать жидкую воду, нагретую до 200℃. Как только вода в этом метастабильном состоянии сталкивается с внешним возмущением, она немедленно и взрывообразно закипает. Перегретую жидкость можно получить, нагревая воду в микроволновой печи. Это становится частой причиной ожогов: вода кажется некипящей, но после легкого толчка мгновенно вскипает💨

Теперь представим себе большой сосуд с поршнем, под которым находится водяной пар (вода в газообразном состоянии). Интуитивно понятно, что при высоком давлении, то есть при опускании поршня, газ будет сжиматься и превращаться в жидкость. Но если в сосуде отсутствуют посторонние частицыцентры конденсации — образование новой фазы будет затруднено, и мы не будем наблюдать капель воды💧 Полученный пар называется пересыщенным. Его еще называют переохлажденным, потому что в другом способе его получают путем охлаждения❄️

Пересыщенный пар применяют в камере Вильсона — устройстве для наблюдения траектории заряженных частиц. Когда в камеру, заполненную пересыщенным паром, влетает заряженная частица, она сталкивается с молекулами газа и вызывает их ионизацию. Полученные ионы становятся центрами конденсации — вдоль пути полёта частицы образуются мельчайшие капельки жидкости, которые фиксируются прибором. Мы наблюдаем траекторию её движения🌠

Если мы возьмём кристально-чистую воду, поместим её в не менее чистый сосуд и охладим до температуры ниже 0℃, то можем получить другое метастабильное состояние — переохлаждённую жидкость🌡. Казалось бы, при отрицательной температуре вода превращается в лёд, но в нашем случае отсутствуют центры кристаллизации, и данный переход затруднен. Экспериментально установлено, что воду можно переохладить до −48℃. Очередные фокусы: как только мы потревожим нашу переохлаждённую жидкость, просто взболтнув её или бросив песчинку, она мгновенно начнёт замерзать и превращаться в лёд🥶

С переохлаждённой водой проводят эффектные эксперименты — струя жидкой воды превращается в лёд пока вытекает из бутылки💦
Электроны Ким Кардашьян можно найти где-то рядом с тобой

Кликбейт? Нет, только научный факт.
Давай разбираться. А я помогу тебе в этом. Это самый важный пост, который выходил на этом канале. Потрать 3-4 минуты на чтение — и ты поймешь одну из самых красивых научных теорий.

Вспомните уроки химии в 8 классе, когда учитель на доске рисовал ядро, вокруг которого по орбитам вращались электрончики. «Кекс с изюмом», планетарная модель, электронные облака... Знакомые слова? Круто!

Лучше всего строение и описание атома объясняет квантовая механика. Это новый раздел теоретической физики, который занимается описанием свойств систем с электронно-ядерным строением. Поведение атомов, электронов, фотонов и элементарных частиц... в общем, всё то, с чем плохо справляется физика в рамках классической механики.

Как и многие другие научные дисциплины, вся квантовая механика опирается на несколько главных постулатов, одним из следствий которых является уравнение Шрёдингера.

Важный нюанс. В рамках квантовой механики микроскопические объекты при одних условиях проявляют свойства частицы, а при других — волны.

И для описания такой двойственности в микромире было выведено уравнение Шрёдингера, которое выглядит пугающе, поэтому мы не будем отбирать хлеб у физиков, занимаясь его решением. Запомним только, что решение уравнения Шрёдингера представляет собой волновую функцию, смысл которой заключается в вероятности обнаружить электрон в той или иной точке пространства. Все, волновая функция, запомнили 🙂

Для наглядного толкования рисуют график радиального распределения электронной плотности. На оси Y откладывается величина, пропорциональная вероятности обнаружить электрон в точке пространства, а на оси X — расстояние от центра атома.

И самое интересное. По мере удаления от центра атома вероятность найти электрон уменьшается (логично, да). Приближается к нулю... Но она никогда его не достигает! То есть даже на бесконечно большом расстоянии от атомного ядра существует ненулевая вероятность обнаружить электрон, связанный с этим ядром!

И это факт, подтвержденный учёными, которые занимаются решением квантовых задач на мощнейших суперкомпьютерах. Другое дело, что вероятность обнаружить электрон после определенного расстояния ничтожно мало 🙂

Но ты только представь, что рядом с тобой можно найти частички преподавателя, который рассказывает лекцию в другом конце аудитории. Электрон от любой знаменитости, сториз которой ты иногда смотришь в Инстаграме*. Или электрон от девушки или парня напротив тебя в метро. Мысль об этом сводит меня с ума!

*Instagram принадлежит Meta, которая признана экстремисткой организацией и запрещена в России.
​​Биотопливо🌱

В эпоху, когда мировое сообщество обеспокоено проблемой глобального потепления, исследуется множество способов уменьшить выбросы парниковых газов в атмосферу. Далеко не новым, но, возможно, эффективным решением является использование биотоплива🔋

Само слово биотопливо у многих на слуху, но мало кто действительно интересовался, из чего его производят. Биотопливо — топливо из растительного или животного сырья, из продуктов жизнедеятельности организмов или органических промышленных отходов. Различают несколько видов биотоплива:

Твёрдое биотопливо🧱
Обычные дрова известны людям с древнейших времён и активно используются по сей день. Для их производства выращивают специальные энергетические леса, состоящие из быстрорастущих пород (тополь, эвкалипт, ива), и используют ту древесину, которая непригодна для строительства и декоративных целей. С развитием технологий появились топливные брикеты и гранулы (пеллеты), состоящие из спрессованных отходов деревообработки — опилок и шелухи. При их сгорании выделяется в полтора раза больше энергии, чем при сгорании обычных дров, но почти в два раза меньше, чем при сгорании каменного угля. В качестве источников дешевой энергии используют так же высушенный навоз, солому и торф. Твердое биотопливо составляет почти 60% от всего производимого биотоплива — около 38% населения использует его в бытовых целях🔥

Жидкое биотопливо💧
Биоэтанол (этиловые спирт) служит альтернативой бензину, либо дополнением к нему для уменьшения количества выхлопных газов. В некоторых странах на законодательном уровне утверждено использование этанола в качестве добавки к бензину для сокращения потребления нефти. Ярким примером является Бразилия — лидер в производстве и использовании биоэтанола из сахарного тростника в качестве топлива🇧🇷 В США биоэтанол вырабатывают преимущественно из кукурузы. К категории жидкого биотоплива так же относятся метанол и бутанол, диметиловый эфир и биодизель — моторное топливо на основе жиров животного и растительного происхождения🌿

Газообразное биотопливо💨
При брожении биологической массы выделяется большое количество биогаза — смеси метана и оксида углерода, — который так же используется в качестве топлива для бытовых и промышленных нужд. Так же распространён метод получения биоводорода при действии бактерий на биомассу🦠

Казалось бы, решение многих экологических проблем связано с отказом от минерального сырья и переходом на биотопливо... Но не всё так очевидно. Несомненно, при сгорании биотоплива не выделяется токсичных выхлопных газов, а выбросы CO₂ ощутимо меньше, чем при использовании угля или нефти. Существует даже представление об «углеродной нейтральности», согласно которому получение энергии из растений не приводит к увеличению общего количества СО₂ в экосистеме. Но все эти доводы подвергаются разумной критике.🤔

Если говорить об использовании дров, то представление об углеродной нейтральности рушится в краткосрочной перспективе. CO₂ моментально образуется в процессе сжигания древесины, а извлечение его из атмосферы происходит при росте новых деревьев в течение десятков и сотен лет. Эту временную задержку обычно называют «углеродным долгом», а для европейских лесов он может достигать двухсот лет🌳

В той же Бразилии для производства жидкого биотоплива в колоссальных количествах вырубаются естественные леса в пользу плантаций сахарного тростника и сокращаются территории, занятые пищевыми и кормовыми культурами, что в совокупности наносит большой вред экологии и увеличивает цены на продовольственные товары🌎

К тому же, переход на использование биотоплива требует технических модификаций⚙️ На биоэтаноле могут работать только так называемые «Flex-Fuel» автомобили с модифицированным двигателем внутреннего сгорания и гибким выбором топлива🚘

Может быть, за биотопливом стоит будущее... Но пока мы выяснили, что полный переход на топливо из растительного и животного сырья связан с множеством трудностей👩🏻‍🔬
Эмульгаторы. Для чего их добавляют в продукты?🥛

Лецитин, сорбит, гуаровая или ксантовая камедь... Вы наверняка встречали эти компоненты в составе продуктов питания или косметических средств. Сегодня мы выясним, что скрывается за загадочными названиями👩🏻‍🔬

Одними из самых популярных пищевых добавок являются эмульгаторы — вещества, обеспечивающие создание эмульсии из несмешивающихся жидкостей🚰

Что же такое эмульсия? Если по-научному, то эмульсия — это дисперсная система, то есть смесь из нескольких жидкостей, не способных раствориться друг в друге или химически взаимодействовать, а потому сохраняющихся в виде мельчайших капель💦 А если по-бытовому, то эмульсия — это однородная смесь воды и жидкостей (масло, жир), которые не растворяются в воде🍺

Проще всего эмульсию представить и понять на примере молока — самой распространённой природной эмульсии🐄 В молоке капли молочного жира равномерно распределены в воде. Если оценивать эмульсию невооружённым взглядом, то такая система не отличается от однородной жидкости, потому что капли нерастворённого вещества имеют микроскопический размер🔬

А теперь давайте сами приготовим эмульсию. Добавим к стакану воды чуть поменьше стакан растительного масла. Как бы мы не старалась и не перемешивали нашу смесь, она останется двухфазной: слой масла будет находиться над слоем воды🥃

И вот тут нам помогут эмульгаторы. Добавляя верно подобранный эмульгирующий компонент при постоянном перемешивании, мы можем добиться однородной жидкой смеси, в которой масло равномерно распределено в воде👍🏻

Сами по себе эмульгаторы выполняют роль поверхностно-активных веществ, которые уменьшают поверхностное натяжение на границе раздела масла и воды. Благодаря этому слой масла разделяется на множество мельчайших капель и равномерно распределяется в воде💧

В том же молоке помимо воды и молочного жира присутствует третий компонент — комплекс белка и лецитина, — который выступает в роли эмульгатора и отвечает за привычную консистенцию🥛

В промышленных масштабах эмульгаторы получают как из природного сырья🌱, так и синтетическим путём🧪

Например, пектин, используемый в производстве десертов, майонеза и молочных продуктов, получают из яблочных и цитрусовых выжимок🍏 Лецитин, добавляемый к шоколаду и выпечке, получают из соевого масла, а различные полисорбаты — из кокосового и пальмового🥥

К синтетическим эмульгаторам относятся производные жирных кислот, глицерина и продукты их этерификации⚗️

Помимо продуктов питания, эмульгаторы являются неотъемлемым компонентом косметики и лекарственных препаратов — они позволяют делать жидкие смеси из тех компонентов, которые сами по себе не смешиваются друг с другом💄💊

Не стоит бояться натуральных эмульгаторов в пищевых изделиях — большинство из них не несут никакого вреда, за исключением случаев индивидуальной непереносимости. Синтетические эмульгаторы наш организм воспринимает аналогично натуральным, поэтому они безопасны в тех количествах, в которых их добавляют к продуктам питания😉
Эмульгаторы. Для чего их добавляют в продукты?🥛

Лецитин, сорбит, гуаровая или ксантовая камедь... Вы наверняка встречали эти компоненты в составе продуктов питания или косметических средств. Сегодня мы выясним, что скрывается за загадочными названиями👩🏻‍🔬

Одними из самых популярных пищевых добавок являются эмульгаторы — вещества, обеспечивающие создание эмульсии из несмешивающихся жидкостей🚰

Что же такое эмульсия? Если по-научному, то эмульсия — это дисперсная система, то есть смесь из нескольких жидкостей, не способных раствориться друг в друге или химически взаимодействовать, а потому сохраняющихся в виде мельчайших капель💦 А если по-бытовому, то эмульсия — это однородная смесь воды и жидкостей (масло, жир), которые не растворяются в воде🍺

Проще всего эмульсию представить и понять на примере молока — самой распространённой природной эмульсии🐄 В молоке капли молочного жира равномерно распределены в воде. Если оценивать эмульсию невооружённым взглядом, то такая система не отличается от однородной жидкости, потому что капли нерастворённого вещества имеют микроскопический размер🔬

А теперь давайте сами приготовим эмульсию. Добавим к стакану воды чуть поменьше стакан растительного масла. Как бы мы не старалась и не перемешивали нашу смесь, она останется двухфазной: слой масла будет находиться над слоем воды🥃

И вот тут нам помогут эмульгаторы. Добавляя верно подобранный эмульгирующий компонент при постоянном перемешивании, мы можем добиться однородной жидкой смеси, в которой масло равномерно распределено в воде👍🏻

Сами по себе эмульгаторы выполняют роль поверхностно-активных веществ, которые уменьшают поверхностное натяжение на границе раздела масла и воды. Благодаря этому слой масла разделяется на множество мельчайших капель и равномерно распределяется в воде💧

В том же молоке помимо воды и молочного жира присутствует третий компонент — комплекс белка и лецитина, — который выступает в роли эмульгатора и отвечает за привычную консистенцию🥛

В промышленных масштабах эмульгаторы получают как из природного сырья🌱, так и синтетическим путём🧪

Например, пектин, используемый в производстве десертов, майонеза и молочных продуктов, получают из яблочных и цитрусовых выжимок🍏 Лецитин, добавляемый к шоколаду и выпечке, получают из соевого масла, а различные полисорбаты — из кокосового и пальмового🥥

К синтетическим эмульгаторам относятся производные жирных кислот, глицерина и продукты их этерификации⚗️

Помимо продуктов питания, эмульгаторы являются неотъемлемым компонентом косметики и лекарственных препаратов — они позволяют делать жидкие смеси из тех компонентов, которые сами по себе не смешиваются друг с другом💄💊

Не стоит бояться натуральных эмульгаторов в пищевых изделиях — большинство из них не несут никакого вреда, за исключением случаев индивидуальной непереносимости. Синтетические эмульгаторы наш организм воспринимает аналогично натуральным, поэтому они безопасны в тех количествах, в которых их добавляют к продуктам питания😉
​​Веселящий газ. Как работает наркоз?😷

В настоящее время почти невозможно представить даже незначительное хирургическое вмешательство без применения анестезии. Она необходима не только для того, чтобы пациент не чувствовал боли, но и чтобы убрать напряжение мышц и других тканей, мешающее работе хирурга. Только мало кто знает, что применение современных анестезирующих препаратов начиналось с открытия самых простых химических веществ👩🏻‍🔬

Каким образом анестезия блокирует боль? Если совсем просто, то сами по себе болевые ощущения формируются в головном или спинном мозге в ответ на болевые импульсы, идущие от специальных рецепторов по всему телу🧠 Анестезия блокирует нервные окончания, нарушая цепочку специальных биохимических реакций, — из-за этого болевой импульс не доходит до центральной нервной системы. Местная анестезия нарушает передачу импульса в определенном участке, а общая (именно её называют наркозом) полностью угнетает ЦНС, убирая болевую чувствительность по всему телу.

Одним из самых популярных веществ для ингаляционного наркоза является оксид азота (I) N₂O (закись азота). Вскоре после его открытия на рубеже 17-18 веков было обнаружено, что вдыхание небольших количеств закиси азота сопровождается эффектом опьянения, эйфории и появлением приступов смеха. За эту особенность закиси азота дали еще одно название — веселящий газ.

Смекалистые умельцы уже на том этапе исторического развития нашли открытому газу альтернативное применение, вдыхая его на светских вечеринках. Впрочем, мало что изменилось. Воздушные шары с веселящим газом по-прежнему продают в клубах и на вечеринках. Но я настаиваю на том, чтобы вы не злоупотребляли закисью азота без медицинской необходимости🤔

В высоких концентрациях оксид азота применяется в медицине для обеспечения хирургического наркоза во время мелких и крупных операций.

Другим популярным летучим веществом для ингаляционной анестезии является диэтиловый эфир. Вещество с простой химической формулой получило широкое распространение в анестезиологии благодаря сильному эффекту и безопасности применения. Выдающийся отечественный хирург Н.И.Пирогов первым в истории медицины начал оперировать в полевых условиях раненых с использованием диэтилового эфира в качестве обезболивающего.

В современной медицине используются различные комбинации анестезирующих веществ для достижения эффективного и безопасного наркоза. Помимо веществ ингаляционного типа, то есть тех, что вводятся через дыхательные пути (+ к упомянутым выше: хлороформ, фторотан, изофлуран), распространены инъекционные вещества — кетамин, производные барбитуровой кислоты и др.🧪

Выбор типа анестезии и препаратов осуществляется анестезиологом на основе предварительных исследований. Именно он контролирует как состояние организма во время операции, так и режим подачи анестезирующих веществ. Поэтому ни одно оперативное вмешательство не может обойтись без врача-анестезиолога😉
Как делали первые фотографии?📸

Сейчас мы не можем представить свою жизнь без новых селфи в инстаграме*, фотографий с друзьями во время редких встреч и фотосессий на рекламных постерах. Но путь к цифровой фотографии и её массовому распространению был очень сложен и интересен. А начиналось всё, как и положено, с химии👩🏻‍🔬

Еще в 1727 году немецкий химик Шульце обнаружил чувствительность солей серебра к свету — они темнели на свету и оставались без изменений в темноте💡Например, белый хлорид серебра темнел под действием света за счёт образования металлического серебра:
AgCl + свет → Ag + Cl₂

Вскоре был предложен способ закрепить полученное изображение с помощью раствора аммиака NH₃, который растворял не засвеченный хлорид серебра:
AgCl + NH₃ → Ag(NH₃)₂Cl
Поскольку хлорид серебра удалялся, дальнейшее действие света никак не влияло на изображение🙅‍♀️

Следующим этапом в развитии фотографии стало появление дагеротипии — фотопроцесса на основе светочувствительности йодида серебра AgI. В качестве основы под фотографию использовалась серебряная пластинка, обработанная парами йода. Её помещали в прототип фотоаппарата — камеру-обскура🎥

Что из себя представляла камера-обскура? Простой светонепроницаемый ящик с маленьким отверстием (от 0,1 до 5 мм в зависимости от фокусного расстояния), через которое внутрь проникали лучи света и попадали на экран с противоположной стороны🎇

Свет, падая на пластинку, покрытую йодидом серебра, вызывал его разложение по уже знакомой нам схеме:
AgI + свет → Ag + I₂
Полученное изображение было настолько слабым и незаметным, что человеческий глаз не мог его разглядеть, поэтому его называли скрытым🔍

Чтобы проявить скрытое изображение пластинку помешали в камеру, наполненную парами ртути Hg, которые образовывали амальгаму серебра. Изображение усиливалось за счёт увеличения массы, то есть происходило его проявление👁

Чтобы «закрепить» изображение, нужно было удалить светочувствительный йодид серебра с поверхности. Для этого со временем стали применять тиосульфат натрия Na₂S₂O₃, который быстро растворял йодид серебра:
AgI + Na₂S₂O₃ → Na₃Ag(S₂O₃)₂ + NaI

В результате засвеченные места пластинки, покрытые сплавом ртути и серебра, рассеивали отражённый свет, а в теневых участках отражались окружающие предметы, как в зеркале. Расположив готовый дагерротип напротив чёрного бархата, получали позитивное изображение — чёрно-белую картинку, где тени, как и положено, были черные, а светлые участки — белыми🔘

В дальнейшем была изобретена калотипия — способ получения изображения с использованием бумаги, пропитанной йодидом серебра. А уже потом стали использовать фотоэмульсиисмеси галогенидов серебра и фотографического желатина🎞

Дальнейшие открытий позволили ускорить и упростить процесс получения изображений, что в итоге привело к тиражированию и появлению моментальных фотографий🖨 Такие снимки не требовали манипуляций в лаборатории, а светочувствительное покрытие обрабатывалось встроенными химреактивами📷 После «полароидных» снимком наступила эра цифровой фотографии, развитие которой мы наблюдаем по сей день👀

И это лишь очень малая часть всей предыстории, скрытой за миниатюрными мощнейшими фотокамерами в наших смартфонах📱

*Instagram принадлежит Meta, которая признана экстремисткой организацией и запрещена в России.
Чёрное золото 🛢

Нефть... как часто мы слышим о ней из каждого новостного ресурса? Кажется, будто весь мир сейчас зависит от её цен. Феномены стран, достигших пика развития после открытия нефтяных запасов, и прогнозы мировой экономики мы оставим соответствующим специалистам, а я хочу обсудить чёрное золото с точки зрения химии👩🏻‍🔬

Что делают из нефти? Непосредственно из сырой — ничего, а вот из продуктов её переработки — почти всё, что только можно представить. От топлива до декоративной косметики💄Сырая нефть представляет смесь больше чем из 2000 компонентов, большую часть которых представляют органические вещества: жидкие и газообразные углеводороды, сернистые, азотистые и кислородные соединения. Возникает закономерная задача — отделить одни вещества от других.

Эту проблему решают с помощью ректификации — процесса разделения жидких смесей на фракции, различающиеся температурами кипения, путём многократного испарения и конденсации. А теперь простыми словами. Каждое вещество в составе сырой нефти имеет свою температуру кипения. Мы нагреваем смесь до одной температуры🌡, при которой испаряется легколетучий компонент, конденсируем пар💨, как под крышкой кастрюли с кипящей водой, и отводим из системы собранную чистую фракцию💧 Затем повторяем процедуру многократно и при разных температурах, чтобы отделить каждое вещество. Это если совсем грубо.

В реальности весь процесс проводят в огромных ректификационных колоннах, где одновременно протекает множество актов испарения и конденсации. Каждый миг наполнен движением: из колонки постоянно отводятся чистые фракции и загружается сырая нефть. Такая неравновесная система с трудом поддается даже строгому химическому описанию🤯

На выходе получаем фракции разного состава:
• При температуре до 100℃ выкипает петролейная фракция — смесь легких бесцветных углеводородов (пентаны С₅Н₁₂ и гексаны С₆Н₁₄ ). Используется в качестве растворителя, топлива для горелок и зажигалок⚗️
• При 140℃ выделяется бензиновая фракция, которая уходит на производство горючего для двигателей внутреннего сгорания. Стоит отметить, что хороший бензин получается далеко не их всех сортов нефти, ведь его качество напрямую зависит от содержания определенных ароматических соединений🚘
• От 140 до 180°С испаряется лигроиновая фракция — более тяжелая смесь горючих углеводородов. Она идёт на производство растворителей, лакокрасочных смесей, добавок к топливу и других продуктов нефтехимии🧪
• До 220°С выделяется керосиновая фракция — в первую очередь представляющая топливо для реактивных двигателей самолетов и ракет✈️
• При 350°С испаряются последняя летучая дизельная фракция — компонент топлива для морских судов и горючего для отопительных систем🚢
• Дальнейшая ректификация осложняется, так как остаются труднолетучие вязкие смеси — мазут и гудрон. Их разделяют вакуумной перегонкой и получают компоненты технических масел, парафина и той самой черной тягучей жидкости для дорожных покрытий и кровельных материалов🛢

А если вам кажется, что на этом путь переработки нефти заканчивается, то спешу обрадовать. Это было только начало😉
Серебро. Так ли оно полезно? 👽

Наверняка вы вспомните, как бабушки и дедушки клали в кувшин с водой ложки, кольца и другие серебряные изделия, чтобы обеззаразить воду и придать ей целебные свойства. Попробуем выяснить, насколько этот метод является эффективным 🍶

Серебро — драгоценный металл, которому уже давно было найдено применение в медицине. До середины прошлого века нитрат серебра AgNO₃ использовался в качестве наружного антисептика под названием ляпис. Было обнаружено, что небольшие его концентрации подавляют жизнедеятельность микробов, прижигают рану и устраняют воспаления. Концентрированные растворы представляют опасность, так как способны вызвать глубокий химический ожог 😰 Эти свойства обусловлены разложением нитрата серебра на свободное серебро Ag, оксид азота NO₂ и молекулярный кислород O₂.

Однако в настоящее время ляпис почти не используется из-за своей токсичностью. Ему на смену быстро пришли более эффективные антисептики💊

Другой интересной с медицинской точки зрения формой серебра является коллоидный раствор, то есть мельчайшие частицы серебра размером от 1 нанометра, равномерно распределенные в воде. Такой раствор является своеобразным генератором ионов серебра, потому что частички металла постепенно окисляются кислородов воздуха и переходят в растворимую форму.

Было установлено, что гарантированно убивать некоторые бактерии способны растворы с концентрацией ионов серебра свыше 150 мкг/л, что в три раза больше предельно допустимой концентрации для человека... Получается, что концентрированные растворы могут не только расправиться с микробами, но и нанести ощутимый вред нашему организму 🦠

Более того, серебро — это ядовитый тяжёлый металл, никак не участвующий в метаболизме и способный накапливаться в органах. При длительном поступлении в организм избыточных доз серебра развивается аргирия (аргироз) — болезнь, при которой кожа принимает серебристый или синевато-серый оттенок 😨

Получается, что риск подвергнуться токсическому воздействию серебра превышает возможную антибактериальную эффективность. Поэтому распространение коллоидных серебряных продуктов регулируется, а препараты на его основе назначаются лишь в исключительных случаях 🔬

Но спешу обрадовать. Серебряная ложка, залегающая на дне кувшина, никогда не поднимет концентрацию ионов серебра в воде до значимого уровня 🍴 Поэтому вреда от такой воды никакого. Ровно, как и пользы
Студенты с мехмата МГУ объединили для учащихся DeepSeek, Qwen и ChatGPT бесплатно в одном боте.

Бот умеет:
- ✍️ писать тексты: статьи, эссе, посты, сценарии и даже стихи.
- 💡 генерировать креативные идеи для проектов, презентаций или хобби.
- 📊 анализировать данные, составляю планы и даю советы по бизнесу.
- 🎓 обучать чему угодно: от истории до программирования.
- 😊 создавать картинки по описанию.
Из чего делают пигменты?

Об одном из двух основных компонентов, входящих в состав красок, мы уже поговорили в предыдущем посте. Настало время окунуться в яркую палитру цветов. Только начнём с ахроматических, то есть чёрного, белого и всех оттенков серого между ними и, как всегда, с точки зрения химии👩🏻‍🔬

Думаю, вы с легкостью догадаетесь, из чего состоит черный пигмент🔳 Да, это одна из модификаций углерода — сажа. Она образуется в ходе неполного сгорания или термического разложения углеводородов и представляет собой чистый углерод C🔥 Почему неполного? Если горение будет протекать в избытке кислорода O₂, то, как мы знаем, углеводороды сгорают с образованием углекислого газа CO₂ и воды H₂O. Но если процесс горения поддерживать при недостатке кислорода, то образуется ядовитый угарный газ CO и сажа С, которую осаждают из коптящего пламени на специальных охлаждаемых поверхностях. Например, много сажи образуется при сжигании бензола, который горит характерным коптящим пламенем⚗️

Выбор пигмента белого цвета уже шире🔲. Вы наверняка слышали об одном из древнейших белых пигментов — свинцовых белилах (основный карбонат свинца 2PbCO₃·Pb(OH)₂). Сейчас этот пигмент запрещен для использования в малярных работах из-за его высокой токсичности, но несколько веков назад люди не знали об опасности соединений свинца и добавляли его даже в косметику☠️. С помощью свинцовых белил дамы из высшего света добивались ровного и белоснежного цвета лица, нанося при этом непоправимый вред коже и своему здоровью.

Существенным недостатком свинцовых белил также было взаимодействие с сероводородом H₂S, содержащимся в небольших количествах в воздухе. При реакции свинца с серой образуется очень прочное соединение черного цветасульфид свинца PbS. В ходе необратимого процесса белый цвет на картинах постепенно темнел.

На смену свинцовым белилам пришли цинковые белилаоксид цинка ZnO. Благодаря своему противовоспалительному действию он вам может быть известен как основной компонент цинковой мази, которая как раз имеет белоснежный цвет.

В современных эмалях используют титановые белиладиоксид титана TiO₂, — которые по многим свойствам обыгрывают цинковые. Титановые белила обладают более сильной кроющей способностью и не меняют своего цвета со временем и при нагревании.

Но между цинковыми и титановыми белилами есть отличия помимо кроющей способности, существенные в работе художника👩🏻‍🎨 Цинковые обладают более холодным слегка голубоватым оттенком, а титановые наоборот — более теплым и желтоватым. Поэтому в профессиональных наборах масляных красок так и сохранились эти два «оттенка» белого🤷🏻‍♀️

Диоксид титана не является токсичным соединением и используется в качестве зарегистрированной пищевой добавки E171. В качестве абразивного вещества его добавляют, например, в зубную пасту🦷

Оттенки серого, очевидно, получают смешением белого и черного. Но известны и пигменты серого цвета, приготовленные из металлического порошка или графита. Например, измельченный цинк или алюминий.

О пигментах хроматических цветов, то есть оттенков цветового круга (красный, желтый, синий и др.) поговорим в следующий раз🎨 Оставайтесь на связи😉
Что такое октановое число? 🚘

Автолюбители и просто читатели, проезжавшие мимо заправок, вы задумывались над тем, что значат числа на электронном табло? И я сейчас не о постоянно растущих ценах на бензин, а о загадочных номерах 80, 92, 95 и далее по списку. Эти числа обозначают октановое число данной марки бензина, и сейчас мы разберемся, что за ним скрывается 🚀

Вопреки распространённому заблуждению, числа на электронном табло заправочных станций не говорят напрямую о качества состава топлива. Бензин, независимо от марки, должен быть чистым, прозрачным, обеспечивать лёгкость запуска мотора, не содержать откровенной отравы и давать в меру токсичный выхлоп. Большинство параметров, включая содержание примесей, для любого бензина одинаково и строго контролируется официальными документами. Но одним из важнейших свойств топлива является детонационная стойкость — способность воспламеняться и сгорать в цилиндрах двигателя без нежелательных взрывных процессов💥Именно детонационную стойкость характеризует октановое число.

За эталон детонационной устойчивости принята смесь органических соединений — изооктана и н-гептана, причем этих веществ почти не содержится в самом бензине. Устойчивость изооктана равна 100 единиц, а н-гептана — 0. То есть если бензин имеет октановое число, равное 92, то он детонирует так же, как смесь из 92 частей изооктана и 8 частей гептана. Это как взвешивать колбасу на весах с гирями — мы определяем массу куска по количеству гирь, при этом самих гирь в колбасе не содержится, они выступают в качестве эталона массы ⚖️

Вот только октановое число не получится определить так же легко, как массу или содержание примесей. Это связано с тем, что реальное топливо не является смесью изооктана и гептана, поэтому результаты определения зависят от метода — октановые числа можно измерять в лабораторных установках или на реальных автомобилях в процессе езды. Данный анализ является довольно-таки затратным по всем параметрам 🤔

Бензин с более высоким октановым числом может выдержать более высокую степень сжатия без досрочного самовоспламенения — детонации. Чем она опасна? Быстрое сгорание бензина в цилиндрах создает волны давления, которые отражаются от стенок и создают характерный «стук» — металлический звон. Такой процесс снижает мощность двигателя и ускоряет его износ. При возникновении сильных детонационных волн двигатель может быть даже поврежден или разрушен. Поэтому производители добавляют в топливо специальные присадки, которые увеличивают его устойчивость при сжатии, а так же используют более современные методы переработки нефти ⚙️

Если вы желаете услышать, какой бензин заливать, то универсального ответа нет. В первую очередь следует учитывать рекомендации производителя автомобилей. Для мощных двигателей применяют исключительно бензин с высокими октановыми числами🏎 Если залить в него топливо с меньшей устойчивостью, будет сильная детонация и мотор быстро выйдет из строя. В простые машины заливать высоко-октановое топливо не имеет смысла 🚗 Расход если и упадет, то незначительно, а лучше машина ехать точно не станет.

И напоследок хочу отметить, что октановое число используется при характеристике бензина. Для дизельного и газообразного топлива используются цетановое и метановые числа соответственно. Там действуют совершенно иные характеристики воспламеняемости. Что хорошо для бензинового мотора, для дизеля категорически противопоказано. Как говорится — каждому своё 😉
Жирные кислоты. Зачем они нужны?🐟

Если вы интересуетесь здоровым питанием и периодически заглядываете на iHerb в поисках витаминов и БАДов, то наверняка натыкались на такую биодобавку, как омега-3. Даже если эта тема раньше обходила вас стороной, это не значит, что знать о ней необязательно. Потому что жирные кислоты непосредственно входят в рацион каждого человека. А вот для чего они нужны и в каком виде, мы сейчас разберёмся👩🏻‍🔬

Как можно понять из названия, жирные кислоты поступают в наш организм вместе с жирами из пищи🍳 Они же после ряда биохимических преобразований входят в состав всех липидных клеточных мембран и выполняют важные функции. От того, какие жирные кислоты и в каком количестве мы получаем из пищи, напрямую зависит наше здоровье: от состояния кожи и сердечно-сосудистой системы до развития плода во время беременности❤️

С точки зрения химического строения, жирные кислоты представляют длинную углеродную цепочку🧬 Начинается она с карбоксильной группы -COOH, отвечающей за кислотные свойства, от которой тянется зигзагообразный хвост, заканчивающийся метильным фрагментом -CH₃. Число групп в хвосте варьируется от 4 до 24. Когда три таких огромных молекулы объединяются в одну с помощью простого глицерина, мы получаем полноценную молекулу жира💦

Начало углеродной цепочки принято обозначать первой буквой греческого алфавита α «альфа», а ее конец — ω «омега». Если жирные кислоты содержать только одинарные простые связи, то такие кислоты называются насыщенными. Они не так полезны для нашего организма, но поговорить о них можно в другой раз.

Если в углеродной цепочки есть двойные связи, то такие жирные кислоты называются ненасыщенными, и к ним как раз относятся омега-3,-6,-9. Цифра в названии говорит о том, где находится двойная связь. Например, в омега-6 двойная связь расположена на 6 атоме углерода, если начинать отсчёт от омега-конца. Положение двойных связей очень важно, потому что от этого зависят свойства👁

Пожалуй, с сухой теорией мы разобрались. Теперь к более жизненным моментам

Омега-3 относится к незаменимым жирным кислотам, то есть наш организм самостоятельно не может их вырабатывать — они должны поступать с пищей. Основным источником в рационе является морская рыба: рыбий жир, сельдь, лосось, печень трески, красная и черная икра🐟

Омега-6 также относится к незаменимым жирным кислотам, однако мы можем получить достаточное её количество из рациона. Омега-6 содержится в растительных маслах, семенах, некоторых овощах и мясе🥩

Омега-9 не являются незаменимыми, в отличие от омега-3 и омега-6. Иными словами, наш организм не испытывает дефицита омега-9, так как в нужных количествах сам способен синтезировать её из других жирных кислот🍗

Большинство людей получают из рациона в 15-25 раз больше омега-6, чем омега-3, и это плохо отражается на здоровье. В лабораторных испытаниях доказано, что достаточное количество омега-3 обладает противовоспалительным действием, улучшает состояние кожи, уменьшает риск заболеваний сердца, эффективно при депрессивных состояниях и очень важно для нормального роста детей👩🏻‍⚕️

Будем честны, большинство из нас не ест жирную рыбу необходимые два раза в неделю, поэтому омега-3 не поступает в нужном количестве вместе с пищей. А отсюда все последствия дефицита, которые вы можете подчеркнуть из абзаца выше🤔

Хорошо, что в настоящее время существует большой выбор одноименных биодобавок, которые способны поддерживать уровень омега-3, но перед их применением нужно обязательно проконсультироваться со специалистом💊

Поэтому важно обращать внимание на то, что мы едим🥑