Vikhr models
2.06K subscribers
35 photos
3 videos
50 links
Vikhr models news feed
Задонатить можно:
- Тинькофф сбп:
- - https://www.tbank.ru/cf/3W1Ko1rj8ah

Наш сайт: https://vikhr.org
Чат сообщества: @vikhrmodels
Download Telegram
Forwarded from LLM Arena
This media is not supported in your browser
VIEW IN TELEGRAM
🤯 На Арене появилась YandexGPT Experimental Quattro

Ищем на сайте llmarena.ru или прямо здесь в Telegram и не забываем отдать свой голос — это важно для развития платформы.

UPD: модель оказалась YandexGPT 5 Pro
Please open Telegram to view this post
VIEW IN TELEGRAM
👍132
Vikhr-YandexGPT-5-Lite-8B-it – мощная и универсальная модель, основанная на YandexGPT-5-Lite-8B-pretrain. Отличается высокой качеством генерации и подходит для широкого спектра задач.

🔗 Карточка модели: https://huggingface.co/Vikhrmodels/Vikhr-YandexGPT-5-Lite-8B-it
🔗 GGUF (скоро): https://huggingface.co/Vikhrmodels/Vikhr-YandexGPT-5-Lite-8B-it_GGUF
⚖️ Лицензия: yandexgpt-5-lite-8b-pretrain

👥 Авторы: @LakoMoorDev @nlpwanderer
52👍18🔥4🥰2🤨2💔1🫡1
Что хочется видеть во второй версии arena hard Rus?
Forwarded from ML Underhood
YandexGPT 5 Lite Instruct теперь в опенсорсе 🎉

В феврале в открытый доступ вышла Pretrain-версия, а сейчас очередь дошла и до YandexGPT 5 Lite Instruct. Это модель на 8 миллиардов параметров с размером контекстного окна в 32К токенов.

О претрейне мы уже писали вот тут, а алайнмент аналогичен тому, через который проходит YandexGPT 5 Pro. На этапе SFT концентрировались на сложных запросах, а также методах фильтрации и ранжирования данных. В рамках RLHF комбинировали RL-подходы, которые дают лучшие результаты: DPO, LogDPO и PPO. Подробнее об этом читайте на Хабре.

По результатам внутреннего слепого попарного сравнения (side-by-side) новая модель YandexGPT 5 Lite превосходит Qwen-2.5-7B-instruct в 62% случаев и не уступает GPT-4o mini в решении стандартных задач сервисов Яндекса. Показатели бенчмарков можно посмотреть в таблице.

А ещё обновили лицензию: теперь можно использовать модель не только в некоммерческих целях, но и в коммерческих до 10 миллионов выходных токенов в месяц. Если ваши объёмы выше, напишите на почту, указанную в тексте лицензии.

Модель доступна на Hugging Face. Там же есть и квантизованная версия с поддержкой GGUF. YandexGPT 5 Lite Instruct совместима с llama.cpp и Ollama.

ML Underhood
👍26🔥83👏2
Doom - Первый ризонинг бенчмарк для русского


Открылись для сообщества, статья на хабр и arxiv скоро, мелкие детали доезжают.

Обратите внимание что бенчмарк основан на публичных данных, вероятно все модели в бенчмарке в том или ином виде видели

hf leaderboard

github
👍29🔥13
Всем привет! Рад сообщить о нашем новом релизе RuadaptQwen3-32B-Instruct 🎉. Это адаптированная версия Qwen3-32B, которая также является гибридным ризонером с режимом размышлений по-умолчанию.

Отличия текущего релиза от прошлых:

1. Версионирование: теперь версионирование моделей будет идти внутри одного репозитория, но в Versions будут отмечены даты и соответствующие коммиты, которые могут быть использованы, если кому-то больше понравится “прошлая версия”. Таким образом мне проще выкладывать текущие наработки, которые я все еще не могу назвать итоговыми, но которые уже неплохи на мой взгляд.

2. Процедура адаптации была улучшена: токенайзер содержит потерянные смайлы и не содержит ненужных цифр, количество данных в continued pretraining было увеличено вдвое и еще несколько минорных изменений процедуры, которые приводят к бОльшему качеству на выходе.
Так как для Qwen3-32B не была выложена базовая версия, мы сделали ее сами, дообучив только эмбеддинги (входные и выходные) на +-миллиарде токенов.

3. Новый набор для SFT и пока что отсутствие Pref-tuning этапа: в этот раз данные для обучения были сгенерированы на основе большой модели Qwen3-235B-A22B. Для сохранения функции переключения между режимами, в 30% случаев think содержимое выбрасывалось и добавлялся /no_think токен к последнему сообщению пользователя. Для 10% случаев, когда размышления оставались добавлялся токен /think. Используемый датасет выложен и упомянут в карточке модели.

4. Метрик пока нет, но в целом имеется некоторая просадка на мат. задачах, однако для обычного использования все должно быть +- на уровне исходной версии.

Если заметите плохие или наоборот хорошие стороны модели - обязательно пишите, так как сейчас активно идут работы над инструктивной частью и фидбек по поводу проблем будет очень актуален.

Модель: https://huggingface.co/RefalMachine/RuadaptQwen3-32B-Instruct
GGUF: https://huggingface.co/RefalMachine/RuadaptQwen3-32B-Instruct-GGUF
Space: https://huggingface.co/spaces/RefalMachine/RuadaptQwen3
🔥29👍162👏1🤔1
This media is not supported in your browser
VIEW IN TELEGRAM
ToneSpeak - первый русскоязычный датасет с описанием акцента и настроения.

Сгенерили через openai api, получилось очень приятно, пользуйтесь!

Huggingface
🔥38👍21👎1
мы оказывается пробили 300к загрузок
🔥89👍105🏆2👏1
Выложили QVikhr-3-1.7B на основе Qwen-3-1.7B, лучшая в классе и обгоняет лучшие модели. Ризонинг прямо сейчас выключен, будет позже. Но и без него модель обходит стандартную модель с включенным ризонингом. А самое главное, можно запустить на CPU и не страдать от низкой скорости TPS (Token per second).

🔗 Карточка модели: https://huggingface.co/Vikhrmodels/QVikhr-3-1.7B-Instruction-noreasoning
🔗 GGUF (скоро): https://huggingface.co/Vikhrmodels/QVikhr-3-1.7B-Instruction-noreasoning-GGUF
⚖️ Лицензия: apache-2.0

👥 Авторы: @LakoMoorDev @nlpwanderer
🔥64👍81👎1
Обновление модели RuadaptQwen3-32B-Instruct! (v2)
Текущая версия более стабильная, в частности с точки зрения циклов, некорректных символов и работы с длинными контекстами, а также подросли метрики относительно v1.

Были добавлены метрики для сравнения с исходной версией Qwen3 и видно, что адаптация прошла успешно, где-то есть небольшие просадки, но в целом все на уровне.

Очень жду от вас отзывов и проблемных промптов для дальнейшей прокачки моделей, ну а пока приступим к адаптации меньших версий 🚀

Модель: https://huggingface.co/RefalMachine/RuadaptQwen3-32B-Instruct
GGUF: https://huggingface.co/RefalMachine/RuadaptQwen3-32B-Instruct-GGUF
Please open Telegram to view this post
VIEW IN TELEGRAM
11👍6🔥6
QVikhr-3-4B-Instruction

Еще одна модель на базе Qwen 3. Тесты производительности подтверждают значительные улучшения модели. В Ru Arena General, QVikhr-3-4B-Instruction получила оценку 78.2, что существенно превосходит результат базовой модели Qwen3-4B (64.8).

🔗 Карточка модели: https://huggingface.co/Vikhrmodels/QVikhr-3-4B-Instruction
🔗 GGUF (скоро): https://huggingface.co/Vikhrmodels/QVikhr-3-4B-Instruction-GGUF
⚖️ Лицензия: apache-2.0

👥 Авторы: @LakoMoorDev @nlpwanderer
🔥27👍1310
Релиз модели RuadaptQwen3-4B-Instruct 🚀
🔹Адаптированная модель быстрее и в целом не уступает исходной модели по качеству.
🔹Замерили в этот раз помимо метрик на датасетах и поведение на Vikhrmodels/arenahardlb и, как можно видеть, на данном датасете модель превосходит исходную в обоих вариантах: think и no_think.
🔹Также мы замерили не только наш текущий релиз против исходной модели, но и недавний релиз QVikhr-3-4B-Instruction.
🔹Метрики на датасетах будут в комментариях к посту.

Модель: https://huggingface.co/RefalMachine/RuadaptQwen3-4B-Instruct
GGUF: https://huggingface.co/RefalMachine/RuadaptQwen3-4B-Instruct-GGUF
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥15👍42
Запустить бусти с блогами двухнедельными и возможностью вмешиваться в планы?
Anonymous Poll
49%
Да
51%
Нет
🔥2
T-pro 2.0 – с гибридным ризонингом 🥳

Лучшая модель в своём весе среди всех открытых моделей по широкому ряду русскоязычных бенчмарков. В два раза более быстрая и дешевая чем аналоги по качеству.

Модель с рассуждениями, создана для построения сложных систем и решения сложных задач. Модель в открытом доступе, качай да используй.

– Qwen3 32B based
– Гибридный ризонинг
– Уплотненный токенайзер на русском
– Спекулятивный декодер в комплекте
– Apache 2.0 – используй как хочешь

Больше подробностей выложим в тех репорте – с бенчмарками и накопленными знаниями.

Сама модель и основные бенчмарки
Спекулятивный декодер
Новость
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥33👍75🤡5👀2
Vikhr models
Для нашего бенчмарка Doom вышел блог на хабр
https://huggingface.co/datasets/t-tech/T-math


Примерно тоже самое только в профиль и чуть больше
Сегодня мы выложили улучшенную версию RefalMachine/RuadaptQwen3-4B-Instruct 🎉

Модель стала лучше по всем фронтам:
1️⃣ На бенчмарке по каждой категории рост, в частности, на математике.
2️⃣ Стабильность модели повысилась (меньше циклов).
3️⃣ На арене также наблюдается рост (при снижении средней длины ответа!).

Текущая версия (v2) на данный момент вероятно SoTA для русского языка среди всех тюнов и/или адаптаций (на основании нашего бенчмарка). От исходной версии присутствуют небольшие отставания, однако на арене RuadaptQwen3-4B-Instruct стабильно обходит Qwen3-4B, а скорость генерации русскоязычного текста существенно лучше. Бенч можно посмотреть по ссылке (там без арены) https://huggingface.co/datasets/RefalMachine/llmtf_open_benchmark

Улучшения связаны с более качественным post-training, включая использование нового SFT датасета (T-Wix), а также добавление preference-tune шага.

Веса в основном репозитории и GGUF также обновлены:
https://huggingface.co/RefalMachine/RuadaptQwen3-4B-Instruct
https://huggingface.co/RefalMachine/RuadaptQwen3-4B-Instruct-GGUF
24🔥14👍2