ПАО «ОАК»
25K subscribers
2.24K photos
386 videos
356 links
✍️ Написать нам @UAC_News_Bot
🔹О людях и профессиях - https://t.iss.one/uac_aviaprof

Официальный канал Публичного Акционерного Общества «Обьединенная Авиастроительная Корпорация» Госкорпорации Ростех.
Download Telegram
#ОАК_технологии Новые аэродинамические компоновки

✈️ Магистральные самолеты в ближайшее время должны значительно измениться. Компоновка «труба с крыльями» себя, практически, изжила. Больше из нее «выжать» вряд ли что удастся для улучшения летных характеристик самолетов.

Последнее возможное улучшение – снижение коэффициента трения. Существующие сегодня самолеты все турбулентны. А турбулентное трение в пять-шесть раз выше, чем ламинарное трение. Поэтому одно из перспективных направлений улучшения аэродинамических характеристик – ламинаризация. Надо сделать такие формы самолета, чтобы его обтекание было нетурбулентным. Но больше для стандартной компоновки нет никакого резерва улучшения.

Поэтому весь мир ищет новые варианты. Мы гордимся, что в России, в нашем головном авиационном институте ЦАГИ еще 35 лет назад впервые была предложены компоновки, которые позже на Boeing назвали «blended wing body» - размазанный между крылом фюзеляж. У нас его называют просто «летающее крыло». Эти компоновки позволяют примерно на четверть улучшить аэродинамику самолета, повысить аэродинамическое качество.

Это ближайший шаг в области аэродинамической компоновки. К нему есть огромное разнообразие подходов. Рассматривается верхнее расположение стандартных двигателей для экранирования их шума. Возможно использование «гребенки» из электрических двигателей и одного большого двигателя-генератора. Есть и еще целый ряд инноваций, которые позволят значительно улучшить характеристики такой компоновки по сравнению с традиционными сегодня.

Никто не сказал, что фюзеляж должен быть в виде «трубы». В ЦАГИ, например, разработана новая концепция делового реактивного самолета малой размерности (на фото). Главная особенность этой компоновки – фюзеляж каплевидной формы, диаметр которого больше роста человека. Пассажир может встать в полный рост, пройти по салону, размяться. И при этом не надо пригибаться, как в существующих сегодня бизнес-джетах этого класса. Тем самым обеспечивается непревзойденный уровень комфорта среди самолетов данной размерности.

Есть и другие интересные инновации, например – ламинарное крыло малой стреловидности. До сих пор прямое крыло означало низкую скорость. Но деловые люди хотят летать быстро. У новой концепции бизнес-джета за счет грамотного использования правила площадей и тонкой «настройки» профиля крейсерская скорость, подтвержденная в многочисленных испытаниях в аэродинамических трубах, составляет 0,82 Маха. Это быстрее, чем многие современные дальнемагистральные лайнеры. ©️
Please open Telegram to view this post
VIEW IN TELEGRAM
Сегодня у Воронежского авиазавода день рождения, он был создан 91 год назад

За время своего существования предприятие выпустило десятки типов самолётов конструкции Туполева, Ильюшина, Москалева, Ермолаева, Антонова, Балабуева и Новожилова.

Сегодня ВАСО специализируется на производстве и обслуживании широкофюзеляжных дальнемагистральных лайнеров Ил-96. В кооперации с другими предприятиями #ОАК завод участвует в производстве агрегатов для различной авиационной техники. Здесь ведутся опытно-конструкторские работы по созданию самолётов ильюшинского конструкторского бюро, в том числе пассажирского дальнемагистрального Ил-96-400М. Значительную долю загрузки предприятия также обеспечивает кооперация по производству комплектующих для МС-21, SSJ-NEW, Ил-76МД-90А и Ил-114-300.

На производственной площадке завода развиваются центры специализации ОАК «Мотогондолы» и «Пилоны», которые выпускают агрегаты для самых новых российских самолётов. В частности, это мотогондолы под отечественные двигатели ПС-90А и ПД-14.

Давайте поздравим заводчан с праздником!
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
#ОАК_технологии Водородные двигатели

Переход на новые альтернативные источники энергии уже в ближайшем будущем может стать необходимостью.

Ученые могут ошибаться на 50 и даже на 100 лет, однако запасы нефти в какой-то момент будут исчерпаны. Та страна, ученые и специалисты которой первыми найдут оптимальное решение проблемы перехода на неисчерпаемые источники энергии, получит доминирующее положение в мире. Особенно это важно для России с учетом огромного населения, богатейших природных ресурсов, занимаемого географического положения, климатических зон и огромных расстояний.

Сейчас многие зарубежные компании занялись вопросом создания самолета с двигателями, работающими на криогенных компонентах топлива, в первую очередь – на жидком водороде.

Все претендуют на первенство в этой области, совершенно забывая, что у нас еще в 1988 году совершила первый полет летающая лаборатория Ту-155 с таким двигателем. Еще во второй половине 1970-х годов в связи с дефицитом мировой добычи нефти и углублением энергетического кризиса получили актуальность работы по применению альтернативных видов топлива в промышленности и на транспорте. И именно тогда ОКБ им. А. Н. Туполева начало работы по теме «Холод», предусматривавшей использование жидкого водорода в качестве авиационного топлива. Кроме того, целью этой программы стала экологическая оценка перехода на горючее, продуктом сгорания которого был бы обычный водяной пар.

Для изучения особенностей эксплуатации самолетов на таком горючем было решено изготовить на базе самолета Ту-154Б летающую лабораторию, получившую позднее наименование Ту-155. На нем вместо штатного центрального мотора был установлен экспериментальный двигатель НК-88, работающий на водороде. Впервые Ту-155 поднялся в небо 15 апреля 1988 года. Узнав об этом полете, известный американский авиационный инженер Карл Бревер (Carl Brewer) так охарактеризовал проект Ту-155: «Русские совершили в авиации дело, соразмерное полету первого спутника Земли».

В 1989 году самолет переоборудовали: вместо НК-88 поставили экспериментальный двигатель НК-89, работающий на сжиженном природном газе – метане, который хранился при температуре –162 °C. ©️
Please open Telegram to view this post
VIEW IN TELEGRAM
#ОАК_технологии Гибридные установки

Поиск новых типов силовых установок в авиации велся всю ее историю. Часто параллельно шли испытания двигателей на разных физических принципах. Это позволяло определить более перспективное направление работ. Сегодня активно идут эксперименты с установкой на самолетах электродвигателей. Этот тренд обусловлен их относительной простотой и экологичностью: у электродвигателей нет вредных выбросов, как у традиционных турбореактивных двигателей. Однако создание самолета, использующего в качестве силовой установки исключительно электрические двигатели, слишком сложная задача, требующая новых технологий в области хранения энергии: необходимы аккумуляторы, которые бы были достаточно легкими, быстро заряжались, обладали необходимой емкостью, не реагировали бы на различные климатические условия.

Если считать только в штуках, то чисто электрические летательные аппараты сейчас, пожалуй, самые массовые в мире. Но это всего лишь небольшие коптеры, служащие в большинстве случаев средством развлечения. Рост размеров таких летательных аппаратов упирается в существующие возможности электрических аккумуляторов. Более логичным пока видится вариант гибридной силовой установки, сочетающий газотурбинные или поршневые авиадвигатели с электрическими.

Сегодня направление малошумных и экологичных гибридных силовых установок стало одной из определяющих технологий для будущего авиации. Их исследованием, прежде всего для перспективных серийных самолетов малой и региональной авиации, занимаются все авиаконцерны мира и профильные научные центры. Такая авиация, по прогнозам, должна появиться в мире где-то в районе 2030 года. Преимущество гибридных силовых установок состоит в возможности, с одной стороны, получить выгоду от энергоэффективных, экологически чистых электрических технологий, с другой – сохранить приемлемую весовую эффективность за счет оптимизации конструкции и режимов работы газотурбинных или поршневых авиационных двигателей.

Лидером в этой области является Россия. В 2021 году в Сибирском научно-исследовательском институте авиации (СибНИА) им. С. А. Чаплыгина совместно с ЦИАМ был создан самолет-лаборатория Як-40ЛЛ. Это первая в мире летающая лаборатория для испытаний гибридной силовой установки, включающей электрический авиационный двигатель мощностью 500 кВт. Вместо центрального двигателя на этом «Яке» стоит газотурбинный двигатель ТВ2-117. На его валу установлен электрогенератор. Генератор является источником питания для уникального, не имеющего аналогов в мире по мощности электрического авиадвигателя. Его особенность заключается в применении в качестве обмоток статора высокотемпературных сверхпроводников второго поколения. КПД электродвигателя составляет 98%.

Высокотемпературные сверхпроводники позволяет в разы снизить массу электрических машин. Есть все основания считать, что только подобная технология позволит в перспективе создавать электрические двигатели и генераторы мощностью 10-20 МВт для гибридных силовых установок ближне- и среднемагистральных самолетов. Применение же электродвижения в авиации позволит существенно снизить шум и потребление топлива. В перспективе 15-20 лет по мере усовершенствования технологий прогнозируется снижение затрат на эксплуатацию самолетов до 75%. ©️
Please open Telegram to view this post
VIEW IN TELEGRAM
#ОАК_технологии Цифровые сервисы и технические средства обучения

Летчик истребителя, как шутят в авиации, является одной из самых дорогих деталей самолета. Действительно, подготовка пилота современного истребителя обходится примерно в 5 млн $. В последнее время благодаря новым технологиям стало возможным сократить трудозатраты на его обучение в 1,5-2 раза.

Изменился и сам уровень тренажеров. Главное отличие – передача контента теперь идет в более удобном зрительном виде. Семимильными шагами развиваются средства визуализации. Широко используются такие компьютерные технологии, как трехмерная графика, виртуальная реальность, дополненная реальность. Вовсю применяются 3D-очки. Они улучшают наглядность, а, следовательно, ускоряют процесс обучения.

При летной подготовке для большей наглядности летчик, получив задание, может теперь выполнить на тренажере «пред-полёт», то есть заранее посмотреть компьютерную симуляцию: как это будет выглядеть на тренажере или в реальном полете, какая информация будет отражаться на приборах кабины. Инструктор может остановить демонстрацию и объяснить особенности данного задания и то, что отображается на экранах и приборах. Потом летчик идет в тренажерный зал или на аэродром и выполняет задание.

Кроме того, новые технические средства обучения позволяют учить летчиков и техников практически без преподавателя. Преподаватель требуется только для того, чтобы, например, рассказать в целом про самолет. Он также организует контроль и обратную связь с обучаемым, задавая нужное количество повторений, исходя из индивидуальных особенностей обучаемых. Преподаватель также определяет объем обучения в зависимости от того, учится ли обучаемый с нуля, переучивается ли на новую технику, восстанавливает утраченные после болезни или большого перерыва летные навыки. Следующим этапом развития средств обучения мы видим в организации автоматического «входного контроля» обучаемого, тестирования степени его интеллекта и знаний. Тогда станет возможным автоматическая настройка блока обучающих программ для каждого обучаемого, исходя из его способностей.

Благодаря развитию цифровых технологий, технические средства обучения получили сегодня и еще одно новое применение. Теперь 3D-модели, созданные для учебных классов, используются при подготовке рабочих на сборочном производстве. Сотрудник предприятия, где собирают летательные аппараты, может надеть 3D-очки и увидеть самолет во всем его масштабе. Можно ходить вокруг него, удалить внешние панели, посмотреть в «нутро» машины. Когда работник подходит в цехе к реальному самолету, он уже готов воспринимать все его пространственные размеры, знает где находится нужный блок, какие тот имеет реальные габариты, что нужно сделать, чтобы добраться до него.

Технические средства обучения становятся также важным элементом в общей системе интегрированной логистической поддержки эксплуатации самолетов. Ведь при создании тренажеров и обучающих программ учитывается опыт работы с реальным самолетом. А с полунатурных стендов идет информация о том, что и как работает.

Получается как бы повторное моделирование. Поэтому наши подразделения по разработке технических средств обучения совместно с отделами эксплуатации вместе формируют электронную базу по каждому самолету, их электронные формуляры. Такие формуляры ведутся по каждой машине, по каждой системе и каждому изделию на ней: когда оно было изготовлено, когда поставлено на самолет, когда нужно его снять или сделать регламент. На основании этой информации становится возможным делать прогноз работы систем, строить логистическую поддержку. ©️
Please open Telegram to view this post
VIEW IN TELEGRAM
#ОАК_технологии Цифровые модели и двойники

Создание новых самолетов существенно ускорила разработка их цифровых моделей на базе высокоточных методов математического моделирования. Сначала мы применяли этот подход для того, чтобы сократить количество возможных ошибок при проектировании, а дальше использовали его в процессе испытаний и эксплуатации.

Цифровые модели применяются для решения многих конструкторских задач. Например, в силу требований многофункциональности для истребителя пятого поколения необходимо было создать оригинальную форму планера. Математические модели позволили проверить целую серию различных его вариантов. Причем, если продувки в аэродинамических трубах заняли бы 1-2 года, то на суперкомпьютере мы один вариант планера рассчитывали от недели до месяца, так осуществлялся непрерывный поиск и проверка альтернативных вариантов. Кроме того, математическая модель давала еще одно важное преимущество: демонстрировалась полная картина измеряемых параметров в каждой точке исследуемого пространства или поверхности. Эти данные оказались благодатным материалом для инженеров при принятии рациональных решений.

Благодаря успехам в области математического моделирования стало возможным моделировать все системы летательного аппарата одновременно. Тем самым, появилась возможность применить для новых самолетов концепцию цифровых двойников – создать интегрированную цифровую модель всего самолета. Цифровой двойник – это синхронизированная с физическим объектом совокупность виртуальных моделей того или иного физического процесса. Такие двойники отслеживают состояние самолета в эксплуатации и позволяют предсказывать их поведение в будущем.

Концепция цифровых двойников многогранна и позволяет, например, прогнозировать, как поведет себя самолет в различных ситуациях. Или находить причины отказов, изучать особенности их появления и прогнозировать последствия. Это очень помогает для формирования гармонизированного энергетического баланса и понимания процессов функционирования как в штатных ситуациях, так и в критических.

Конечно, цифровые двойники нужны, в первую очередь, для того, чтобы инженерам было проще разобраться в сложных физических процессах до появления натурного образца. Но есть для них и другие применения, например, – подготовка персонала. Ведь цифровой двойник способен показать обучающемуся какая в различных ситуациях должна быть последовательность допустимых действий в производстве и эксплуатации.

Уже сегодня одна из граней концепции цифровых двойников – среда виртуального инжиниринга позволяет на серийных заводах ОАК совершенствовать сборочно-технологические процессы серийного производства. Конечно, цифровое моделирование не заменяет работу инженеров и производственных специалистов, но помогает найти и убедиться в правильности решений. При этом формируется опыт, который специалисты производства используют при решении новых задач и освоении новых изделий авиационной техники.

Среда виртуального инжиниринга позволяет визуализировать основные этапы производства. Если быть более точными, то процессу изготовления любой детали предшествует этап подготовки производства. Чтобы исключить ошибки и недочеты, выявляемые порой уже по факту, после выпуска детали, производится отработка технологического процесса в виртуальном пространстве. В результате в серийное производство запускается изученный в виртуальном мире объект, и впоследствии в цехе деталь изготавливается без грубых отклонений.

Предприятия ОАК совместно с ведущими научными коллективами страны ведут активную работу по развитию и внедрению концепции цифровых двойников непрерывно разрабатывая новые и усовершенствуя существующие предметно-ориентированные и объектно-ориентированные математические модели самолетов и их инфраструктуры. ©️
Please open Telegram to view this post
VIEW IN TELEGRAM
Заместитель генерального директора ОАК — генеральный директор "Яковлева" Андрей Богинский рассказал в интервью агентству ТАСС о том, над чем сегодня работает Дивизион гражданской авиации #ОАК:

🔹Идет работа над первыми серийными МС-21. В производстве 18 таких машин — 6 для «Аэрофлота» и еще 12 – для «России». Они все находятся в разной стадии производства. Первые пять планеров уже готовы, собраны, началась установка отечественных систем и агрегатов.

🔹Поставки МС-21 начнутся с 2024 года.

🔹Первые два серийных SJ-100 будут готовы в этом году, но для сертификации с двигателем ПД-8 предстоит выполнить не менее 120 полетов.

🔹Не исключается возможность сотрудничества по проектам МС-21 и SJ-100 с Индией.

🔹«Яковлев» будет заниматься послепродажным обслуживанием, маркетингом и работой с поставщиками для проектов Ил-114 и Ту-214.

🔹Импортозамещенный МС-21 может получить новые версии – МС-21-200 или МС-21-400. Решение будет принято после широкого и глубокого анализа рынка.

🔹Единое название для всей линейки гражданских самолетов возможно, но оно должно быть благозвучным как на русском, так и на английском языке - емкость российского рынка не бесконечна.

🔹«Яковлев» и ГТЛК активно прорабатывают вопрос создания беспилотников, сформировать требования к аппарату планируется до конца года.
Please open Telegram to view this post
VIEW IN TELEGRAM