🔍 Microsoft Chain-of-Retrieval (CoRAG): Новый подход к умному поиску информации
Вышла очень любопытная разработка от Microsoft и Renmin University!
Они представили CoRAG - систему, которая делает поиск информации похожим на человеческий процесс мышления.
🧠 Как это работает технически
1. Пошаговый поиск: Вместо того чтобы сразу искать ответ, система разбивает запрос на маленькие подзапросы. Прямо как люди, когда решают сложную задачу!
2. Rejection Sampling: Система генерирует несколько цепочек поиска (до 16 штук) и выбирает лучшую, основываясь на вероятности правильного ответа.
3. Масштабирование на тесте: Можно управлять балансом между скоростью и качеством, регулируя:
- Длину цепочки поиска (L)
- Количество пробных цепочек (N)
- Температуру сэмплирования (0.7 по умолчанию)
4. Архитектурные фишки:
- Использует E5-large для начального поиска
- Работает с базой из 36 млн документов
- Обучается на датасете из 125k примеров
🚀 Результаты, - огонь:
- На сложных вопросах (multi-hop QA) показывает улучшение на 10+ пунктов
- Превосходит даже более крупные модели
- Отлично справляется с задачами, требующими пошагового рассуждения
💡 Примеры применения:
1. Умный поиск по документации
2. Аналитика кода
3. Умный дебаггер
4. Архитектурные решения
Особенно круто, что всё это можно настраивать под конкретные задачи: где-то нужна скорость, а где-то - точность.
Наконец-то можно написать ЛЛМ-зануду, который засыпет ИИ дополнительными вопросами! 🤓
Paper
#Microsoft #CoRAG #RAG
———
@tsingular
Вышла очень любопытная разработка от Microsoft и Renmin University!
Они представили CoRAG - систему, которая делает поиск информации похожим на человеческий процесс мышления.
🧠 Как это работает технически
1. Пошаговый поиск: Вместо того чтобы сразу искать ответ, система разбивает запрос на маленькие подзапросы. Прямо как люди, когда решают сложную задачу!
2. Rejection Sampling: Система генерирует несколько цепочек поиска (до 16 штук) и выбирает лучшую, основываясь на вероятности правильного ответа.
3. Масштабирование на тесте: Можно управлять балансом между скоростью и качеством, регулируя:
- Длину цепочки поиска (L)
- Количество пробных цепочек (N)
- Температуру сэмплирования (0.7 по умолчанию)
4. Архитектурные фишки:
- Использует E5-large для начального поиска
- Работает с базой из 36 млн документов
- Обучается на датасете из 125k примеров
🚀 Результаты, - огонь:
- На сложных вопросах (multi-hop QA) показывает улучшение на 10+ пунктов
- Превосходит даже более крупные модели
- Отлично справляется с задачами, требующими пошагового рассуждения
💡 Примеры применения:
1. Умный поиск по документации
# Вместо простого поиска по ключевым словам
"Как настроить OAuth в Django?"
# CoRAG может построить цепочку:
"Что такое OAuth?" ->
"Какие библиотеки OAuth есть для Django?" ->
"Как настроить social-auth-app-django?" ->
"Какие типичные ошибки при настройке?"
2. Аналитика кода
# Вместо прямого поиска проблемы
"Почему падает производительность?"
# CoRAG может:
"Какие endpoints самые медленные?" ->
"Какие SQL-запросы они используют?" ->
"Есть ли N+1 проблемы в этих запросах?" ->
"Какие индексы могут помочь?"
3. Умный дебаггер
# Система может анализировать ошибку пошагово:
"В каком контексте возникает ошибка?" ->
"Какие переменные доступны?" ->
"Похожие паттерны в логах?" ->
"Типичные решения такой проблемы?"
4. Архитектурные решения
# При проектировании системы:
"Какие требования к масштабируемости?" ->
"Какие паттерны подходят?" ->
"Примеры похожих систем?" ->
"Типичные проблемы и решения?"
Особенно круто, что всё это можно настраивать под конкретные задачи: где-то нужна скорость, а где-то - точность.
Наконец-то можно написать ЛЛМ-зануду, который засыпет ИИ дополнительными вопросами! 🤓
Paper
#Microsoft #CoRAG #RAG
———
@tsingular
🔥6✍2⚡1❤1👍1