Веб-парсер на Python всего за 5 минут
Интернет — огромный источник ценной информации для дата-сайентиста. Конечно, если уметь её правильно добывать. И этот небольшой гайд в этом вам поможет. В нём подробно рассмотрели создание парсера сайтов с использованием BeautifulSoup и Pandas:
https://www.kdnuggets.com/2022/02/build-web-scraper-python-5-minutes.html
#python #веб #datascience
Интернет — огромный источник ценной информации для дата-сайентиста. Конечно, если уметь её правильно добывать. И этот небольшой гайд в этом вам поможет. В нём подробно рассмотрели создание парсера сайтов с использованием BeautifulSoup и Pandas:
https://www.kdnuggets.com/2022/02/build-web-scraper-python-5-minutes.html
#python #веб #datascience
Подборка полезных материалов для уверенного старта в Data Science
— Курс по машинному обучению от ШАД Яндекса
— Курс по анализу данных и нейросетям на Python от Computer Science Center (часть 1)
— Курс по анализу данных и нейросетям на Python от Computer Science Center (часть 2)
— Самый знаменитый курс по нейронным сетям CS231n от университета Stanford
— Стартовые библиотеки для анализа данных и ML на Python (Pandas, NumPy, TensorFlow)
— Полный курс по искусственному интеллекту CS221 от университета Stanford
— Лучшие датасеты для машинного обучения и анализа данных
— Полный курс по ML на языке R
#начинающим #datascience #нейросети #ml
— Курс по машинному обучению от ШАД Яндекса
— Курс по анализу данных и нейросетям на Python от Computer Science Center (часть 1)
— Курс по анализу данных и нейросетям на Python от Computer Science Center (часть 2)
— Самый знаменитый курс по нейронным сетям CS231n от университета Stanford
— Стартовые библиотеки для анализа данных и ML на Python (Pandas, NumPy, TensorFlow)
— Полный курс по искусственному интеллекту CS221 от университета Stanford
— Лучшие датасеты для машинного обучения и анализа данных
— Полный курс по ML на языке R
#начинающим #datascience #нейросети #ml
Сегодня новости о прорывах ИИ, нейросетей и машинного обучения появляются чуть ли не каждый день. И их стало уже столько много, что сложно выцепить главное. Чтобы вам было легче сориентировться, собрали топ-5 самых важных новостей из мира Data Science с комментариями эксперта: https://tproger.ru/articles/top-5-novostej-iz-mira-data-science-dajdzhest-mts/
Картинку, кстати, сгенерировала нейросеть ruDALL-E Malevich по запросу «Иллюстрация для поста Типичный программист» — писали о ней раньше.
#datascience #нейросети #ml #эксперты
Картинку, кстати, сгенерировала нейросеть ruDALL-E Malevich по запросу «Иллюстрация для поста Типичный программист» — писали о ней раньше.
#datascience #нейросети #ml #эксперты
Что почитать на выходных: «Data Science. Наука о данных с нуля», 2-е издание
Эта книга с очень увлекательной подачей позволяет познакомиться Data Science сразу на практике. Она содержит краткий курс языка Python и основ машинного обучения с элементами линейной алгебры, статистики, теории вероятностей, методов обработки данных и множеством других важных тем.
#datascience #python #sql #книги
Эта книга с очень увлекательной подачей позволяет познакомиться Data Science сразу на практике. Она содержит краткий курс языка Python и основ машинного обучения с элементами линейной алгебры, статистики, теории вероятностей, методов обработки данных и множеством других важных тем.
#datascience #python #sql #книги
Машинный перевод с двухсот языков, генерация бесконечных изображений от Microsoft и рефлексия нейросети о самой себе.
Подробнее о ярких новостях из мира Data Science можно прочитать в дайджесте от МТС Диджитал:
https://tprg.ru/kwAT
#datascience
Подробнее о ярких новостях из мира Data Science можно прочитать в дайджесте от МТС Диджитал:
https://tprg.ru/kwAT
#datascience
Делимся крутой шпаргалкой по DataFrame
DataFrame — ключевая структура данных Python-библиотеки pandas. В шпаргалке есть всё про основные операции с DataFrame. Акцент сделан на Data Wrangling — этапе работы с данными, когда данные преобразовываются из «сырого» формата в пригодный для аналитики. Если вы инженер данных, аналитик или датасаентист — эта шпаргалка точно для вас.
А если нужно погрузиться в тему глубже, здесь вы найдёте версии в PDF и с дополнениями по Pandas, Numpy, SciPy и т.д.: https://www.utc.fr/~jlaforet/Suppl/python-cheatsheets.pdf
#python #datascience
DataFrame — ключевая структура данных Python-библиотеки pandas. В шпаргалке есть всё про основные операции с DataFrame. Акцент сделан на Data Wrangling — этапе работы с данными, когда данные преобразовываются из «сырого» формата в пригодный для аналитики. Если вы инженер данных, аналитик или датасаентист — эта шпаргалка точно для вас.
А если нужно погрузиться в тему глубже, здесь вы найдёте версии в PDF и с дополнениями по Pandas, Numpy, SciPy и т.д.: https://www.utc.fr/~jlaforet/Suppl/python-cheatsheets.pdf
#python #datascience
Чего компании ждут от специалистов по Data Science в 2023 году
IT-рынок очень подвижен, а требования к джунам меняются регулярно. В статье проанализировали несколько десятков актуальных вакансий по Data Science, а также реальный опыт прохождения собеседований в последние месяцы. И на их примере показали, как к 2023 году изменились ожидания от начинающих дата-сайентистов:
https://tprg.ru/DYlX
#datascience
IT-рынок очень подвижен, а требования к джунам меняются регулярно. В статье проанализировали несколько десятков актуальных вакансий по Data Science, а также реальный опыт прохождения собеседований в последние месяцы. И на их примере показали, как к 2023 году изменились ожидания от начинающих дата-сайентистов:
https://tprg.ru/DYlX
#datascience
В чём разница между дата-аналитиком и ML-инженером?
Разбираем обязанности вместе с реальными специалистами: https://tprg.ru/KmMS
#datascience #ml
Разбираем обязанности вместе с реальными специалистами: https://tprg.ru/KmMS
#datascience #ml
Какие вопросы на собеседовании задают дата-сайентистам в Google?
Разбираем самые популярные вопросы с собеседований и пошаговые решения, которые помогут вам подготовиться
#datascience #собеседование #google
Разбираем самые популярные вопросы с собеседований и пошаговые решения, которые помогут вам подготовиться
#datascience #собеседование #google
5 признаков, что вам пора в Data Science
Очевидные (и не очень) признаки, которые подскажут, нужно ли вам двигаться в науку о данных и какое направление Data Science выбрать: https://tprg.ru/7lZu
#datascience
Очевидные (и не очень) признаки, которые подскажут, нужно ли вам двигаться в науку о данных и какое направление Data Science выбрать: https://tprg.ru/7lZu
#datascience
Обновлённый роадмап по Data Science 2023
Если вы только подступились к Data Science, роадмап – хорошее средство сэкономить время. Так что представляю карту навыков Data Science глазами практикующего специалиста. На диаграмме Исикавы вы найдёте самые распространённые понятия и инструменты.
А подробнее — в статье: https://tproger.ru/articles/roadmap-data-science-2023/
#datascience
Если вы только подступились к Data Science, роадмап – хорошее средство сэкономить время. Так что представляю карту навыков Data Science глазами практикующего специалиста. На диаграмме Исикавы вы найдёте самые распространённые понятия и инструменты.
А подробнее — в статье: https://tproger.ru/articles/roadmap-data-science-2023/
#datascience
Обновили пошаговый план для тех, кто хочет вдумчиво подойти к изучению Data Science
Здесь главное быть готовым, что Data Science — раздел информатики на стыке статистики и программирования, поэтому знать надо много.
А чтобы было проще, структурировали информацию от выбора языка и библиотек до практики в машинном обучении: https://tproger.ru/curriculum/data-science-expert-plan
#datascience
Здесь главное быть готовым, что Data Science — раздел информатики на стыке статистики и программирования, поэтому знать надо много.
А чтобы было проще, структурировали информацию от выбора языка и библиотек до практики в машинном обучении: https://tproger.ru/curriculum/data-science-expert-plan
#datascience
Как войти в сотню лучших на Kaggle и стать востребованным дата-сайентистом
Это не так-то просто: нужно не только иметь мощный бэкграунд в математике и программировании, но и неугасаемый азарт, дающий мотивацию программировать 24/7.
Автор статьи — человек, занявший 68-е место в мировом рейтинге Kaggle, и в этом материале он делится своим опытом участия в соревнованиях, а также рассказывает, какие возможности открылись ему после.
#datascience #советы
Это не так-то просто: нужно не только иметь мощный бэкграунд в математике и программировании, но и неугасаемый азарт, дающий мотивацию программировать 24/7.
Автор статьи — человек, занявший 68-е место в мировом рейтинге Kaggle, и в этом материале он делится своим опытом участия в соревнованиях, а также рассказывает, какие возможности открылись ему после.
#datascience #советы