Мир подхалимов.
Мир фейков и мир бреда – не худшие сценарии нашего будущего с ИИ.
Два очевидных фактора рисков при массовом использовании лингвоботов в качестве разнообразных ассистентов:
• их свойство галлюцинировать, что может способствовать деформации наших представлений о мире в сторону бреда;
• их феноменальная способность убеждать людей в достоверности фейков, что позволяет манипулировать людьми в самом широком диапазоне контекстов (от потребительского до политического).
Новое исследование «К пониманию подхалимства в языковых моделях» выявило и экспериментально оценило третий вид рисков, способный превратить самое ближайшее будущее в антиутопию «мира подхалимов».
Логика этого риска такова.
1. В ближайшие годы наш мир будут заселен сотнями миллионов ИИ-помощников на основе лингвоботов (от персональных ассистентов до специализированных экспертов и авторизованных советников)
2. Самой популярной методикой для обучения высококачественных ИИ-помощников является обучение с подкреплением на основе человеческой обратной связи (RLHF).
3. Как показало новое исследование, RLHF может способствовать тому, что ответы модели, соответствующие убеждениям пользователя, будут преобладать над правдивыми ответами, - что по-человечески называется подхалимством.
4. Экспериментальная проверка показала, что пять самых крутых из современных лингвоботов (вкл. GPT-4, Claude-2 и llama-2-70b-chat) постоянно демонстрируют подхалимство в четырех различных задачах генерации текста в свободной форме.
Причина этого проста. Если ответ совпадает с мнением пользователя, он с большей вероятностью будет им предпочтен. Более того, как люди, так и модели предпочтений предпочитают корректным ответам убедительно написанные подхалимские ответы.
Последствия превращения мира в антиутопию тотального подхалимства те же, что и для «мира фейков» и «мира бреда». Это интеллектуальная деградация человечества.
Но проблема в том, что избежать формирования «мира подхалимства» можно лишь отказом от обучения с подкреплением на основе человеческой обратной связи. А что взамен – не понятно.
https://www.youtube.com/watch?v=X3Y2MXy9aC8
#ИИ #Вызовы21века
Мир фейков и мир бреда – не худшие сценарии нашего будущего с ИИ.
Два очевидных фактора рисков при массовом использовании лингвоботов в качестве разнообразных ассистентов:
• их свойство галлюцинировать, что может способствовать деформации наших представлений о мире в сторону бреда;
• их феноменальная способность убеждать людей в достоверности фейков, что позволяет манипулировать людьми в самом широком диапазоне контекстов (от потребительского до политического).
Новое исследование «К пониманию подхалимства в языковых моделях» выявило и экспериментально оценило третий вид рисков, способный превратить самое ближайшее будущее в антиутопию «мира подхалимов».
Логика этого риска такова.
1. В ближайшие годы наш мир будут заселен сотнями миллионов ИИ-помощников на основе лингвоботов (от персональных ассистентов до специализированных экспертов и авторизованных советников)
2. Самой популярной методикой для обучения высококачественных ИИ-помощников является обучение с подкреплением на основе человеческой обратной связи (RLHF).
3. Как показало новое исследование, RLHF может способствовать тому, что ответы модели, соответствующие убеждениям пользователя, будут преобладать над правдивыми ответами, - что по-человечески называется подхалимством.
4. Экспериментальная проверка показала, что пять самых крутых из современных лингвоботов (вкл. GPT-4, Claude-2 и llama-2-70b-chat) постоянно демонстрируют подхалимство в четырех различных задачах генерации текста в свободной форме.
Причина этого проста. Если ответ совпадает с мнением пользователя, он с большей вероятностью будет им предпочтен. Более того, как люди, так и модели предпочтений предпочитают корректным ответам убедительно написанные подхалимские ответы.
Последствия превращения мира в антиутопию тотального подхалимства те же, что и для «мира фейков» и «мира бреда». Это интеллектуальная деградация человечества.
Но проблема в том, что избежать формирования «мира подхалимства» можно лишь отказом от обучения с подкреплением на основе человеческой обратной связи. А что взамен – не понятно.
https://www.youtube.com/watch?v=X3Y2MXy9aC8
#ИИ #Вызовы21века
YouTube
Towards Understanding Sycophancy in Language Models
Reinforcement learning from human feedback (RLHF) can lead to sycophantic behavior in AI assistants, as they prioritize matching user beliefs over providing truthful responses. This behavior is driven by human preference judgments favoring sycophantic responses.…
Китай слился или это хитроумная и коварная ловушка для США.
22 октября на главном форуме 25-го ежегодного собрания Китайской ассоциации науки и техники, проходившего в городе Хэфэй, провинция Аньхой, Китайская ассоциация науки и техники определила 3 перечня приоритетных ключевых научных, инженерно-технических и промышленно-технических проблем Китая
https://mp.weixin.qq.com/s/TU1mgIl7EXdncHBIPy8Njg
Сенсация в том, что генеративного ИИ (абсолютного приоритета США) в этих перечнях нет. Вообще!
Что касается ИИ, то он упомянут единожды. В научной проблеме – «как добиться низкоэнергетического искусственного интеллекта».
Значит ли это:
1. что Китай, поняв невозможность конкуренции с США в генеративном ИИ, после тотального экспортного запрета на высокопроизводительные чипы для ИИ, просто слился в конкуренции за первенство в ИИ с США?
2. или же Китай, осознав, что генеративный ИИ – это путь в цивилизационную пропасть, окончательно решил уступить дорогу к ней США, -
не ясно.
И о том, и о другом я писал:
• про 1 «Сверхразум на Земле будет один - американский. Новые экспортные ограничения США лишают Китай конкурентных шансов, как минимум, до 2030» https://t.iss.one/theworldisnoteasy/1827
• про 2 «Противостояние США и Китая: если противник движется к самоубийству, просто не мешайте ему» https://t.iss.one/theworldisnoteasy/981
Я потратил 4 дня на анализ, пытаясь понять, что означает это решение Китая. Увы, окончательного вердикта у меня нет.
Скорее, - это п. 2. Но возможно, я переоцениваю стратегическое визионерство КПК.
В любом случае, ознакомьтесь с тремя перечнями приоритетных ключевых проблем Китая, включив автоперевод 1й ссылки.
P.S. Забавно, что об этом пока не пишут главные СМИ.
Ибо никто не понимает этой чрезвычайно тонкой игры Китая. Даже мои российские коллеги, работающий в ведущих научных центрах Китая.
#Китай #ИИ
22 октября на главном форуме 25-го ежегодного собрания Китайской ассоциации науки и техники, проходившего в городе Хэфэй, провинция Аньхой, Китайская ассоциация науки и техники определила 3 перечня приоритетных ключевых научных, инженерно-технических и промышленно-технических проблем Китая
https://mp.weixin.qq.com/s/TU1mgIl7EXdncHBIPy8Njg
Сенсация в том, что генеративного ИИ (абсолютного приоритета США) в этих перечнях нет. Вообще!
Что касается ИИ, то он упомянут единожды. В научной проблеме – «как добиться низкоэнергетического искусственного интеллекта».
Значит ли это:
1. что Китай, поняв невозможность конкуренции с США в генеративном ИИ, после тотального экспортного запрета на высокопроизводительные чипы для ИИ, просто слился в конкуренции за первенство в ИИ с США?
2. или же Китай, осознав, что генеративный ИИ – это путь в цивилизационную пропасть, окончательно решил уступить дорогу к ней США, -
не ясно.
И о том, и о другом я писал:
• про 1 «Сверхразум на Земле будет один - американский. Новые экспортные ограничения США лишают Китай конкурентных шансов, как минимум, до 2030» https://t.iss.one/theworldisnoteasy/1827
• про 2 «Противостояние США и Китая: если противник движется к самоубийству, просто не мешайте ему» https://t.iss.one/theworldisnoteasy/981
Я потратил 4 дня на анализ, пытаясь понять, что означает это решение Китая. Увы, окончательного вердикта у меня нет.
Скорее, - это п. 2. Но возможно, я переоцениваю стратегическое визионерство КПК.
В любом случае, ознакомьтесь с тремя перечнями приоритетных ключевых проблем Китая, включив автоперевод 1й ссылки.
P.S. Забавно, что об этом пока не пишут главные СМИ.
Ибо никто не понимает этой чрезвычайно тонкой игры Китая. Даже мои российские коллеги, работающий в ведущих научных центрах Китая.
#Китай #ИИ
Weixin Official Accounts Platform
29个重大问题难题发布!(附名单)
С вероятностью >95% риск значительный.
Британская разведка оценила риски ГенИИ до 2025.
Только что опубликованный отчет построен на Probability Yardstick - используемый разведкой набор критериев оценки вероятностей.
Полученное резюме таково:
✔️ Генеративный ИИ (ГенИИ) почти наверняка станет усилителем рисков физической и информационной безопасности из-за распространения и усиления возможностей субъектов угроз и увеличения скорости, масштаба и изощренности атак. Совокупный риск является значительным.
✔️ Правительства весьма вероятно не будут иметь полного представления о прогрессе частного сектора, что ограничит их способность снижать риски. Мониторинг внедрения ГенИИ технологий будет сложен. Поэтому технологические неожиданности почти наверняка породят непредвиденные риски.
✔️ Гонка ГенИИ почти наверняка усилится. Не ясно, станет ли ГенИИ шагом к AGI. Но он откроет новые пути прогресса в широком спектре областей. К 2025 году существует реальная вероятность того, что ГенИИ ускорит развитие квантовых вычислений, новых материалов, телекоммуникации и биотехнологий. Но увеличение рисков, связанных с этим, вероятно, проявится после 2025.
В контексте яростных споров техно-оптимистов и алармистов по поводу рисков ГенИИ, этот вердикт британской разведки напомнил мне анекдот с окончанием "пришел лесник и всех выгнал".
#РискиИИ #ИИгонка #Вызовы21века
Британская разведка оценила риски ГенИИ до 2025.
Только что опубликованный отчет построен на Probability Yardstick - используемый разведкой набор критериев оценки вероятностей.
Полученное резюме таково:
✔️ Генеративный ИИ (ГенИИ) почти наверняка станет усилителем рисков физической и информационной безопасности из-за распространения и усиления возможностей субъектов угроз и увеличения скорости, масштаба и изощренности атак. Совокупный риск является значительным.
✔️ Правительства весьма вероятно не будут иметь полного представления о прогрессе частного сектора, что ограничит их способность снижать риски. Мониторинг внедрения ГенИИ технологий будет сложен. Поэтому технологические неожиданности почти наверняка породят непредвиденные риски.
✔️ Гонка ГенИИ почти наверняка усилится. Не ясно, станет ли ГенИИ шагом к AGI. Но он откроет новые пути прогресса в широком спектре областей. К 2025 году существует реальная вероятность того, что ГенИИ ускорит развитие квантовых вычислений, новых материалов, телекоммуникации и биотехнологий. Но увеличение рисков, связанных с этим, вероятно, проявится после 2025.
В контексте яростных споров техно-оптимистов и алармистов по поводу рисков ГенИИ, этот вердикт британской разведки напомнил мне анекдот с окончанием "пришел лесник и всех выгнал".
#РискиИИ #ИИгонка #Вызовы21века
Китайский генеративный ИИ вырывается вперед.
Он уже способен обобщать романы, размером с «Анну Каренину» (хотя пока не дотягивает до «Войны и мира»)
Споры о понимании больших сложных текстов моделями генеративного ИИ легко разрешаются на практике. Достаточно попросить модель обобщить какой-либо из больших сложных текстов, который вы загрузите в неё. И сравнить результат с обобщением, сделанным вами самостоятельно, используя исключительно ваш собственный интеллект.
Главное ограничение современных моделей при решении таких задач – размер текста, который ей нужно обобщить.
Дело в том, что понимание текста определяется не только самим текстом – содержащихся в нем отдельных слов и фраз, - но и из контекста, в котором эти слова и фразы используются. И если интеллект (искусственный или человеческий) не может при обобщении сопоставить написанное на 1й и на 300й страницах текста, то хорошего обобщения не получится.
Люди так могут. Наше «контекстное окно» огромно. Мы можем прочесть 10 томов эпопеи «Красное колесо» Солженицына и обобщить их всего на одной странице.
Однако, даже самая продвинутая из американских моделей Claude 2 от Anthropic имеет «контекстное окно» размером 100 тыс токенов – это примерно 75 тыс слов. Следовательно, обобщить текст размером с роман Толстого «Анна Каренина» она не в состоянии.
А вот объявленная вчера новая большая языковая модель Baichuan2-192k от китайского стартапа Baichuan имеет «контекстное окно» около 350 тыс иероглифов. И это, примерно равно длине перевода романа «Анна Каренина» на китайский.
До размеров «Войны и мира» (на китайском это, примерно, 560 тыс иероглифов) модель пока не дотягивает. Но, тем не менее, Anthropic и OpenAI, не говоря уж о Google и Microsoft, наверняка, крепко озадачились. Ведь если и дальше так пойдет, смогут ли экспортные ограничения на микрочипы сдержать спурт китайских стартапов?
Может статься ведь, что не «железом» единым куется победа в гонке генеративного ИИ.
Подробней https://www.scmp.com/tech/tech-trends/article/3239849/chinese-ai-start-baichuan-claims-beat-anthropic-openai-model-can-process-350000-chinese-characters
#LLM #ИИгонка #Китай
Он уже способен обобщать романы, размером с «Анну Каренину» (хотя пока не дотягивает до «Войны и мира»)
Споры о понимании больших сложных текстов моделями генеративного ИИ легко разрешаются на практике. Достаточно попросить модель обобщить какой-либо из больших сложных текстов, который вы загрузите в неё. И сравнить результат с обобщением, сделанным вами самостоятельно, используя исключительно ваш собственный интеллект.
Главное ограничение современных моделей при решении таких задач – размер текста, который ей нужно обобщить.
Дело в том, что понимание текста определяется не только самим текстом – содержащихся в нем отдельных слов и фраз, - но и из контекста, в котором эти слова и фразы используются. И если интеллект (искусственный или человеческий) не может при обобщении сопоставить написанное на 1й и на 300й страницах текста, то хорошего обобщения не получится.
Люди так могут. Наше «контекстное окно» огромно. Мы можем прочесть 10 томов эпопеи «Красное колесо» Солженицына и обобщить их всего на одной странице.
Однако, даже самая продвинутая из американских моделей Claude 2 от Anthropic имеет «контекстное окно» размером 100 тыс токенов – это примерно 75 тыс слов. Следовательно, обобщить текст размером с роман Толстого «Анна Каренина» она не в состоянии.
А вот объявленная вчера новая большая языковая модель Baichuan2-192k от китайского стартапа Baichuan имеет «контекстное окно» около 350 тыс иероглифов. И это, примерно равно длине перевода романа «Анна Каренина» на китайский.
До размеров «Войны и мира» (на китайском это, примерно, 560 тыс иероглифов) модель пока не дотягивает. Но, тем не менее, Anthropic и OpenAI, не говоря уж о Google и Microsoft, наверняка, крепко озадачились. Ведь если и дальше так пойдет, смогут ли экспортные ограничения на микрочипы сдержать спурт китайских стартапов?
Может статься ведь, что не «железом» единым куется победа в гонке генеративного ИИ.
Подробней https://www.scmp.com/tech/tech-trends/article/3239849/chinese-ai-start-baichuan-claims-beat-anthropic-openai-model-can-process-350000-chinese-characters
#LLM #ИИгонка #Китай
South China Morning Post
Chinese AI start-up claims to beat US rivals in processing long text
The Beijing-based company, launched by the founder of Sogou, says the latest version of its large language model has a bigger ‘context window’ than its foreign competitors.
Карьерой правят не талант и усердный труд, а связи и престиж.
Снесен последний бастион мифа о движущих силах карьеры.
Эйнштейн XXI века Альберт Барабаши, объединив «науку о сложных сетях» (биологических, техногенных, инфраструктурных, социальных, …) с «наукой о больших данных», создал новую «науку об успехе», совершившую революцию в представлениях людей о ключевых факторах и движущих силах карьерного успеха.
Лежащая в основе «науки об успехе» формула «Performance is about you, success is about us» (“Ваша производительность - это о вас, успех - это о нас”) устанавливает универсальный закон мира сложный сетей. Он детально описан в мировом супер-бестселлере Барабаши (см. мой пост [1]). А в двух фразах его можно сформулировать так:
1. Успех любой карьеры зависит от связей человека (определяемых его местом в профессиональной социальной сети – офлайн плюс онлайн) и его престижа (авторитета, уважения, влияния, «кармы» среди участников этой сети).
2. Чем «центральней» (в сетевом смысле) человек в такой сети, тем выше его шансы стать еще более «центральным». Это 100%но соответствует евангельскому «Закону Матфея» - "богатые становятся еще богаче” - феномен неравномерного распределения преимуществ, в котором сторона, уже ими обладающая, продолжает их накапливать и приумножать, в то время как другая, изначально ограниченная, оказывается обделена ещё сильнее и, следовательно, имеет меньшие шансы на дальнейший успех.
За последние 10 лет лаборатория Барабаши доказала, что положение в сети и социальный престиж являются сильными предикторами карьерного успеха в науке и творческих профессиях. Разработанная ими «Наука об успехе» позволяет на практике ответить и на многие другие вопросы (см. мой пост [2]):
• Если ты такой умный, почему не богатый?
• Почему одним все, а другим ничего?
• Что важнее – талант или случайность (удача)?
• От чего зависит наш успех?
• Стоит ли пытаться нанимать «лучших»?
• Как полосы серийных успехов влияют на карьеры?
• Почему выигрывает та или иная команда?
Формула успеха “Ваша производительность - это о вас, успех - это о нас” правит бал, как в научной, так и в творческой карьере, где результативность оценивается субъективно, и потому карьерный успех сильно зависит от социального престижа и известности («центральности» в своей сети).
В более дюжине моих постов с тэгом #ScienceOfSuccess рассказывается о том, как эта формула успеха работает в академической карьере, изобразительном искусстве, а также в кино- и музыкальной индустрии.
Новое исследование группы Барабаши «Количественная оценка иерархии и престижа в балетных академиях США как социальных предикторов карьерного успеха» [3] рушит последний бастион мифа о таланте и усердном труде, как определяющих факторах карьеры в балете.
Принципиальное отличие балета от прочих видов искусств, сильно усложняющее субъективность оценок исполнителей, в том, что балетное исполнение сильно зависит от физических способностей, а не только от художественного таланта. Казалось бы, физические способности, которые формируются перфекционистскими тенденциями и сдерживаются физическими стрессорам (такими как травмы, перетренированность, расстройства пищевого поведения и плохой сон), в балете должны быть несравненно важнее социальных связей и престижа.
Ан нет! Здесь все, как и везде в нашем сетевом мире - рулят сети отношений и иерархий между танцорами, школами, труппами и всеми другими членами балетного сообщества.
Проанализировав результаты соревнований более 6000 молодых танцоров, участвовавших в Гран-при Молодёжной Америки YAGP с 2000 по 2021, исследователи вынесли вердикт:
Несмотря на важность физической подготовки, на отбор и продвижение танцоров влияют далеко не только их исполнительские способности. Огромную роль играет престиж социальных и профессиональных связей.
Мотайте на ус, родители – где будет учиться чадо.
#ScienceOfSuccess
1 https://t.iss.one/theworldisnoteasy/552
2 https://t.iss.one/theworldisnoteasy/551
3 https://www.nature.com/articles/s41598-023-44563-z
Снесен последний бастион мифа о движущих силах карьеры.
Эйнштейн XXI века Альберт Барабаши, объединив «науку о сложных сетях» (биологических, техногенных, инфраструктурных, социальных, …) с «наукой о больших данных», создал новую «науку об успехе», совершившую революцию в представлениях людей о ключевых факторах и движущих силах карьерного успеха.
Лежащая в основе «науки об успехе» формула «Performance is about you, success is about us» (“Ваша производительность - это о вас, успех - это о нас”) устанавливает универсальный закон мира сложный сетей. Он детально описан в мировом супер-бестселлере Барабаши (см. мой пост [1]). А в двух фразах его можно сформулировать так:
1. Успех любой карьеры зависит от связей человека (определяемых его местом в профессиональной социальной сети – офлайн плюс онлайн) и его престижа (авторитета, уважения, влияния, «кармы» среди участников этой сети).
2. Чем «центральней» (в сетевом смысле) человек в такой сети, тем выше его шансы стать еще более «центральным». Это 100%но соответствует евангельскому «Закону Матфея» - "богатые становятся еще богаче” - феномен неравномерного распределения преимуществ, в котором сторона, уже ими обладающая, продолжает их накапливать и приумножать, в то время как другая, изначально ограниченная, оказывается обделена ещё сильнее и, следовательно, имеет меньшие шансы на дальнейший успех.
За последние 10 лет лаборатория Барабаши доказала, что положение в сети и социальный престиж являются сильными предикторами карьерного успеха в науке и творческих профессиях. Разработанная ими «Наука об успехе» позволяет на практике ответить и на многие другие вопросы (см. мой пост [2]):
• Если ты такой умный, почему не богатый?
• Почему одним все, а другим ничего?
• Что важнее – талант или случайность (удача)?
• От чего зависит наш успех?
• Стоит ли пытаться нанимать «лучших»?
• Как полосы серийных успехов влияют на карьеры?
• Почему выигрывает та или иная команда?
Формула успеха “Ваша производительность - это о вас, успех - это о нас” правит бал, как в научной, так и в творческой карьере, где результативность оценивается субъективно, и потому карьерный успех сильно зависит от социального престижа и известности («центральности» в своей сети).
В более дюжине моих постов с тэгом #ScienceOfSuccess рассказывается о том, как эта формула успеха работает в академической карьере, изобразительном искусстве, а также в кино- и музыкальной индустрии.
Новое исследование группы Барабаши «Количественная оценка иерархии и престижа в балетных академиях США как социальных предикторов карьерного успеха» [3] рушит последний бастион мифа о таланте и усердном труде, как определяющих факторах карьеры в балете.
Принципиальное отличие балета от прочих видов искусств, сильно усложняющее субъективность оценок исполнителей, в том, что балетное исполнение сильно зависит от физических способностей, а не только от художественного таланта. Казалось бы, физические способности, которые формируются перфекционистскими тенденциями и сдерживаются физическими стрессорам (такими как травмы, перетренированность, расстройства пищевого поведения и плохой сон), в балете должны быть несравненно важнее социальных связей и престижа.
Ан нет! Здесь все, как и везде в нашем сетевом мире - рулят сети отношений и иерархий между танцорами, школами, труппами и всеми другими членами балетного сообщества.
Проанализировав результаты соревнований более 6000 молодых танцоров, участвовавших в Гран-при Молодёжной Америки YAGP с 2000 по 2021, исследователи вынесли вердикт:
Несмотря на важность физической подготовки, на отбор и продвижение танцоров влияют далеко не только их исполнительские способности. Огромную роль играет престиж социальных и профессиональных связей.
Мотайте на ус, родители – где будет учиться чадо.
#ScienceOfSuccess
1 https://t.iss.one/theworldisnoteasy/552
2 https://t.iss.one/theworldisnoteasy/551
3 https://www.nature.com/articles/s41598-023-44563-z
Telegram
Малоизвестное интересное
Performance is about you, success is about us
Если вы этого еще не поняли, то ваш путь к успеху будет крайне затруднен
Не спрашивай, что твоя сеть может сделать для тебя, спроси, что ты можешь сделать для своей сети. Так можно перефразировать историческую…
Если вы этого еще не поняли, то ваш путь к успеху будет крайне затруднен
Не спрашивай, что твоя сеть может сделать для тебя, спроси, что ты можешь сделать для своей сети. Так можно перефразировать историческую…
Новый фундаментальный закон мироздания.
Что следует из эквивалентности массы-энергии-информации.
Инфоцунами, поднятое новой работой Мелвина Вопсона «Второй закон инфодинамики и его следствия для гипотезы моделируемой Вселенной» [1] теперь докатилось до Euronews [2] и Reuters[3].
Это ожидаемый взрыв интереса.
• Ибо эра фундаментальных открытий в физике (Томсон, Эйнштейн, Резерфорд, Шрёдингер …) закончилась почти полвека назад – еще в 1980м, после чего импульс фундаментальных прорывов как будто иссяк [4].
• А это - реальная заявка на новый прорыв уровня Эйнштейна.
В её основе лежит предложенный Мелвином Вопсоном принцип эквивалентности массы-энергии-информации (M/E/I).
Его суть проста, как все гениальное.
• Принцип эквивалентности массы и энергии (E=mc^2), сформулированный Эйнштейном в 1905 году в рамках специальной теории относительности (был экспериментально подтвержден лишь спустя 20 лет).
• Сформулированный в 1961 году Рольфом Ландауэром и менее известный неспециалистам принцип Ландауэра, устанавливающий связь между потребляемой энергией и количеством информации при вычислениях (был экспериментально подтвержден лишь спустя 30 лет) [5].
• Объединив эквивалентность массы и энергии Эйнштейна и принцип Ландауэра, увязывающий информацию и энергию, Вопсон выдвинул революционную идею: масса, энергия и информация фундаментально эквивалентны.
Особенно важно то, что принцип M/E/I не только органично согласуется с существующими законами физики, но и предлагает новое объяснение таким явлениям, как темная материя, потенциально переосмысливая ее как информацию.
Развитием принципа M/E/I стал сформулированный Вопсоном второй закон инфодинамики - аналог традиционного второго закона термодинамики, утверждающий, что системы и процессы стремятся к наименьшей информационной энтропии в состоянии равновесия. Это понятие контрастирует со вторым законом термодинамики, который утверждает, что энтропия или беспорядок (хаос) в изолированной системе имеет тенденцию увеличиваться с течением времени.
Т.о. получается, что степень термодинамического хаоса в изолированной системе будет лишь расти, а степень информационного хаоса, наоборот, - будет лишь снижаться.
Иными словами, все системы, включая биологическую жизнь, развиваются таким образом, чтобы их информационная энтропия сжималась и сводилась к наиболее оптимальному возможному значению в состоянии равновесия.
Десятки научно-популярных публикаций про второй закон инфодинамики фокусируют внимание читателей на два ее, действительно, сенсационных следствия.
1) Второй закон инфодинамики хорошо согласуется с гипотезой о том, что наша Вселенная представляет собой колоссального размера компьютер, и все мы живём, по сути, внутри компьютерной симуляции.
2) Лежащий в основе второго закона инфодинамики принцип M/E/I:
- во-первых, предлагает новое объяснение таким явлениям, как темная материя, потенциально переосмысливая ее как информацию;
- во-вторых, дает новое объяснение парадокса Ферми: накопление цивилизацией колоссального объема информации ведет к тому, что под ее весом (каждый бит эквивалентен хоть и очень малой, но массе) цивилизация накрывается медным тазом из-за исчерпания энергии для оперирования информацией (следствие формулы Эйнштейна).
Однако мне, самым сенсационным видится иное.
То, что Вопсон разработал метод экспериментальной проверки своей теории [6].
И это значит, что для ее проверки не потребуется, как раньше, 20-30 лет. И мы довольно скоро узнаем:
• живем ли мы в симуляции;
• что скрывает в себе темная материя;
• накроется ли наш мир медным тазом под спудом накопленной информации через рассчитанные Вопсоном 300 лет.
1 https://pubs.aip.org/aip/adv/article/13/10/105308/2915332/The-second-law-of-infodynamics-and-its
2 https://www.youtube.com/watch?v=d6bLqajyxb8
3 https://www.youtube.com/watch?v=K03arHw-gEM
4 https://youtu.be/Pu8jkCqKHpY?t=982
5 https://t.iss.one/theworldisnoteasy/360
6 https://phys.org/news/2022-03-state-universe.html
#Физика #ТермодинамикаВычислений
Что следует из эквивалентности массы-энергии-информации.
Инфоцунами, поднятое новой работой Мелвина Вопсона «Второй закон инфодинамики и его следствия для гипотезы моделируемой Вселенной» [1] теперь докатилось до Euronews [2] и Reuters[3].
Это ожидаемый взрыв интереса.
• Ибо эра фундаментальных открытий в физике (Томсон, Эйнштейн, Резерфорд, Шрёдингер …) закончилась почти полвека назад – еще в 1980м, после чего импульс фундаментальных прорывов как будто иссяк [4].
• А это - реальная заявка на новый прорыв уровня Эйнштейна.
В её основе лежит предложенный Мелвином Вопсоном принцип эквивалентности массы-энергии-информации (M/E/I).
Его суть проста, как все гениальное.
• Принцип эквивалентности массы и энергии (E=mc^2), сформулированный Эйнштейном в 1905 году в рамках специальной теории относительности (был экспериментально подтвержден лишь спустя 20 лет).
• Сформулированный в 1961 году Рольфом Ландауэром и менее известный неспециалистам принцип Ландауэра, устанавливающий связь между потребляемой энергией и количеством информации при вычислениях (был экспериментально подтвержден лишь спустя 30 лет) [5].
• Объединив эквивалентность массы и энергии Эйнштейна и принцип Ландауэра, увязывающий информацию и энергию, Вопсон выдвинул революционную идею: масса, энергия и информация фундаментально эквивалентны.
Особенно важно то, что принцип M/E/I не только органично согласуется с существующими законами физики, но и предлагает новое объяснение таким явлениям, как темная материя, потенциально переосмысливая ее как информацию.
Развитием принципа M/E/I стал сформулированный Вопсоном второй закон инфодинамики - аналог традиционного второго закона термодинамики, утверждающий, что системы и процессы стремятся к наименьшей информационной энтропии в состоянии равновесия. Это понятие контрастирует со вторым законом термодинамики, который утверждает, что энтропия или беспорядок (хаос) в изолированной системе имеет тенденцию увеличиваться с течением времени.
Т.о. получается, что степень термодинамического хаоса в изолированной системе будет лишь расти, а степень информационного хаоса, наоборот, - будет лишь снижаться.
Иными словами, все системы, включая биологическую жизнь, развиваются таким образом, чтобы их информационная энтропия сжималась и сводилась к наиболее оптимальному возможному значению в состоянии равновесия.
Десятки научно-популярных публикаций про второй закон инфодинамики фокусируют внимание читателей на два ее, действительно, сенсационных следствия.
1) Второй закон инфодинамики хорошо согласуется с гипотезой о том, что наша Вселенная представляет собой колоссального размера компьютер, и все мы живём, по сути, внутри компьютерной симуляции.
2) Лежащий в основе второго закона инфодинамики принцип M/E/I:
- во-первых, предлагает новое объяснение таким явлениям, как темная материя, потенциально переосмысливая ее как информацию;
- во-вторых, дает новое объяснение парадокса Ферми: накопление цивилизацией колоссального объема информации ведет к тому, что под ее весом (каждый бит эквивалентен хоть и очень малой, но массе) цивилизация накрывается медным тазом из-за исчерпания энергии для оперирования информацией (следствие формулы Эйнштейна).
Однако мне, самым сенсационным видится иное.
То, что Вопсон разработал метод экспериментальной проверки своей теории [6].
И это значит, что для ее проверки не потребуется, как раньше, 20-30 лет. И мы довольно скоро узнаем:
• живем ли мы в симуляции;
• что скрывает в себе темная материя;
• накроется ли наш мир медным тазом под спудом накопленной информации через рассчитанные Вопсоном 300 лет.
1 https://pubs.aip.org/aip/adv/article/13/10/105308/2915332/The-second-law-of-infodynamics-and-its
2 https://www.youtube.com/watch?v=d6bLqajyxb8
3 https://www.youtube.com/watch?v=K03arHw-gEM
4 https://youtu.be/Pu8jkCqKHpY?t=982
5 https://t.iss.one/theworldisnoteasy/360
6 https://phys.org/news/2022-03-state-universe.html
#Физика #ТермодинамикаВычислений
AIP Publishing
The second law of infodynamics and its implications for the simulated universe hypothesis
The simulation hypothesis is a philosophical theory, in which the entire universe and our objective reality are just simulated constructs. Despite the lack of e
Книга книг об ИИ – обязательное чтение.
CB Insights опубликовал 120-страничную «Библию генеративного ИИ».
• Для неспециалистов самое интересное и понятное – часть 1.
• Для желающих понять струи и течения – часть 2.
• Для инвесторов и госчиновников – часть 3.
Часть 1. Бум генеративного ИИ (ГенИИ) зрел постепенно, но вдруг рванул так, что мир закачался.
• как это случилось
• и почему
Часть 2. Как выглядит сочетание шторма с цунами.
• Цунами и шторм - явления разной природы. Но в редких случаях они могут совпасть по времени и усилить эффект друг друга.
• Так и случилось с ГенИИ:
– финансирование взлетело до небес благодаря наплыву инвесторов,
– БигТех поменял свои приоритеты, сделав главную ставку на ГенИИ
Часть 3. Куда движется генеративный ИИ?
• Бой за инфраструктуру («есть железо – участвуй в гонке; нет железа – кури в сторонке»)
• Область применения ГенИИ – повсюду (это как с электричеством)
• Локомотивами индустриальных применений уже становятся здравоохранение и науки о жизни, финансы и страхование, ритейл
https://www.cbinsights.com/research/report/generative-ai-bible/
#ИИ #ИИгонка
CB Insights опубликовал 120-страничную «Библию генеративного ИИ».
• Для неспециалистов самое интересное и понятное – часть 1.
• Для желающих понять струи и течения – часть 2.
• Для инвесторов и госчиновников – часть 3.
Часть 1. Бум генеративного ИИ (ГенИИ) зрел постепенно, но вдруг рванул так, что мир закачался.
• как это случилось
• и почему
Часть 2. Как выглядит сочетание шторма с цунами.
• Цунами и шторм - явления разной природы. Но в редких случаях они могут совпасть по времени и усилить эффект друг друга.
• Так и случилось с ГенИИ:
– финансирование взлетело до небес благодаря наплыву инвесторов,
– БигТех поменял свои приоритеты, сделав главную ставку на ГенИИ
Часть 3. Куда движется генеративный ИИ?
• Бой за инфраструктуру («есть железо – участвуй в гонке; нет железа – кури в сторонке»)
• Область применения ГенИИ – повсюду (это как с электричеством)
• Локомотивами индустриальных применений уже становятся здравоохранение и науки о жизни, финансы и страхование, ритейл
https://www.cbinsights.com/research/report/generative-ai-bible/
#ИИ #ИИгонка
CB Insights Research
Generative AI Bible: The ultimate guide to genAI disruption - CB Insights Research
The generative AI landscape is evolving rapidly. Discover how the tech has developed, where it's going, and which trends and players you need to watch.
Нечеловеческие знания, превращающие нас в сверхлюдей.
Мечта Демиса Хассабиса о золотой жиле в применении ИИ стала ближе.
Новое исследование Google DeepMind “Преодоление разрыва в знаниях между человеком и ИИ” [1] – важный шаг к реализации сокровенной мечты руководителя и идеолога DeepMind Демиса Хассабиса.
Эта мечта – превратить людей в сверхлюдей, предоставив им возможности:
• доступа к сверхчеловеческим знаниям машинного сверхинтеллекта;
• выявления среди этого океана знаний тех, что люди в состоянии понять и усвоить;
• обучения людей для передачи им знаний от сверхинтеллекта.
Речь идет вот о чем.
Во-первых, искусственный сверхинтеллект уже существует, и не один.
О некоторых из них мы это знаем точно (ведь никому в голову уже не придет сомневаться в сверхчеловеческом умении ИИ AlphaZero играть в шахматы и Го или в сверхчеловеческом умении ИИ AlphaFold предсказывать трехмерную структуру белков. О других ИИ – например, чатботах типа ChatGPT, – мы точно не знаем, обладают ли они какими-то сверхчеловеческими знаниями. Но есть подозрения, что такие знания у них уже есть.
Для справки. Сверхчеловеческие способности ИИ-систем могут проявляться тремя способами:
1) чистой вычислительной мощью машин,
2) новым способом рассуждения о существующих знаниях
3) знаниями, которыми люди еще не обладают.
Варианты 2 и 3 авторы называют сверхчеловеческим знанием.
Во-вторых, число типов искусственного сверхинтеллекта будет все быстрее расти по мере расширения уже идущего процесса дообучения больших языковых моделей на специализированных наборах обучающих данных.
Т.о. триединая мечта Хассабиса будет становится все более актуальной.
Более того. С точки зрения бизнеса, именно это, а не создание на основе ИИ-чатботов всевозможных ассистентов, может стать золотой жилой применения ИИ.
• Прагматики, типа Сэма Альтмана, не желают этого понять. Они предпочитают ковать железо, не отходя от кассы, здесь и сейчас, на самом востребованном в ИИ – на диалоговых ассистентах (на которых сейчас приходится 62% финансирования разработок ИИ [2]).
• Романтик Демис Хассабис смотрит дальше прагматиков и видит там сверхлюдей, обучаемых специализированными машинными сверхинтеллектами всевозможным сверхчеловеческим знаниям.
Итак, что уже сделано.
На основе ИИ AlphaZero создан фреймворк, позволяющий:
1) Выявлять концепции, которые знают (см. рисунок):
a) как ИИ, так и люди (M ∩ H)
b) только люди (H − M)
c) только машины (M − H) – это сверхчеловеческие знания
2) Среди концепций (M − H), выявлять концепции (M − H)*. Эти концепции изначально трудны для понимания людьми, но люди все же в состоянии их понять и усвоить (напр., знаменитый 37-й ход AlphaGo в матче с Ли Седолом [3])
3) Обучать (путем наблюдения за действиями сверхинтеллекта) концепциям (M − H)* продвинутых в этой области людей, тем самым, как бы превращая их в сверхлюдей.
Фреймворк был проверен экспериментально на ведущих гроссмейстерах мира (с рейтингом 2700-2800). Результаты исследования показывают очевидное улучшение способности гроссмейстеров находить концептуальные ходы из области (M − H)*, по сравнению с их результатами до обучения путем наблюдения за ходами AlphaZero.
Резюме
1) Это лишь начало. Впереди еще пахать и пахать.
2) Переделка фреймворка из области шахмат в области языковых моделей не тривиальна, но возможна.
3) Если мечта Хассабиса взлетит – обретение людьми сверхчеловеческих знаний может стать золотой жилой для развития науки и технологий, ну и конечно для бизнеса.
Однако, пропасти неравенства станут колоссальными: и не только в доходах и здоровье, но и в интеллекте.
Поясняющий рисунок https://disk.yandex.ru/i/V3-KGjMEvGiABA
1 https://arxiv.org/abs/2310.16410
2 https://research-assets.cbinsights.com/2023/08/03113341/GenAI-treemap-072023-1-1024x576.png
3 https://www.youtube.com/watch?v=HT-UZkiOLv8
#ИИ #Вызовы21века
Мечта Демиса Хассабиса о золотой жиле в применении ИИ стала ближе.
Новое исследование Google DeepMind “Преодоление разрыва в знаниях между человеком и ИИ” [1] – важный шаг к реализации сокровенной мечты руководителя и идеолога DeepMind Демиса Хассабиса.
Эта мечта – превратить людей в сверхлюдей, предоставив им возможности:
• доступа к сверхчеловеческим знаниям машинного сверхинтеллекта;
• выявления среди этого океана знаний тех, что люди в состоянии понять и усвоить;
• обучения людей для передачи им знаний от сверхинтеллекта.
Речь идет вот о чем.
Во-первых, искусственный сверхинтеллект уже существует, и не один.
О некоторых из них мы это знаем точно (ведь никому в голову уже не придет сомневаться в сверхчеловеческом умении ИИ AlphaZero играть в шахматы и Го или в сверхчеловеческом умении ИИ AlphaFold предсказывать трехмерную структуру белков. О других ИИ – например, чатботах типа ChatGPT, – мы точно не знаем, обладают ли они какими-то сверхчеловеческими знаниями. Но есть подозрения, что такие знания у них уже есть.
Для справки. Сверхчеловеческие способности ИИ-систем могут проявляться тремя способами:
1) чистой вычислительной мощью машин,
2) новым способом рассуждения о существующих знаниях
3) знаниями, которыми люди еще не обладают.
Варианты 2 и 3 авторы называют сверхчеловеческим знанием.
Во-вторых, число типов искусственного сверхинтеллекта будет все быстрее расти по мере расширения уже идущего процесса дообучения больших языковых моделей на специализированных наборах обучающих данных.
Т.о. триединая мечта Хассабиса будет становится все более актуальной.
Более того. С точки зрения бизнеса, именно это, а не создание на основе ИИ-чатботов всевозможных ассистентов, может стать золотой жилой применения ИИ.
• Прагматики, типа Сэма Альтмана, не желают этого понять. Они предпочитают ковать железо, не отходя от кассы, здесь и сейчас, на самом востребованном в ИИ – на диалоговых ассистентах (на которых сейчас приходится 62% финансирования разработок ИИ [2]).
• Романтик Демис Хассабис смотрит дальше прагматиков и видит там сверхлюдей, обучаемых специализированными машинными сверхинтеллектами всевозможным сверхчеловеческим знаниям.
Итак, что уже сделано.
На основе ИИ AlphaZero создан фреймворк, позволяющий:
1) Выявлять концепции, которые знают (см. рисунок):
a) как ИИ, так и люди (M ∩ H)
b) только люди (H − M)
c) только машины (M − H) – это сверхчеловеческие знания
2) Среди концепций (M − H), выявлять концепции (M − H)*. Эти концепции изначально трудны для понимания людьми, но люди все же в состоянии их понять и усвоить (напр., знаменитый 37-й ход AlphaGo в матче с Ли Седолом [3])
3) Обучать (путем наблюдения за действиями сверхинтеллекта) концепциям (M − H)* продвинутых в этой области людей, тем самым, как бы превращая их в сверхлюдей.
Фреймворк был проверен экспериментально на ведущих гроссмейстерах мира (с рейтингом 2700-2800). Результаты исследования показывают очевидное улучшение способности гроссмейстеров находить концептуальные ходы из области (M − H)*, по сравнению с их результатами до обучения путем наблюдения за ходами AlphaZero.
Резюме
1) Это лишь начало. Впереди еще пахать и пахать.
2) Переделка фреймворка из области шахмат в области языковых моделей не тривиальна, но возможна.
3) Если мечта Хассабиса взлетит – обретение людьми сверхчеловеческих знаний может стать золотой жилой для развития науки и технологий, ну и конечно для бизнеса.
Однако, пропасти неравенства станут колоссальными: и не только в доходах и здоровье, но и в интеллекте.
Поясняющий рисунок https://disk.yandex.ru/i/V3-KGjMEvGiABA
1 https://arxiv.org/abs/2310.16410
2 https://research-assets.cbinsights.com/2023/08/03113341/GenAI-treemap-072023-1-1024x576.png
3 https://www.youtube.com/watch?v=HT-UZkiOLv8
#ИИ #Вызовы21века
Яндекс Диск
Обучение людей нечеловеческим знаниям машинного сверхинтеллекта.jpg
Посмотреть и скачать с Яндекс Диска
Перед важным решением обязательно пройдите через дверной проем.
Экспериментально подтвержден чудовищно странный баг в сознании людей.
Согласно древнему поверию, дверь является своеобразным порталом между пространствами. И хотя в наше время это звучит низкопробным суеверным бредом, как иначе можно объяснить результаты солидного научного эксперимента, проведенного Департаментом психологии Йельского университета?
На общечеловеческом уровне, похоже, никак. Говоря же научным языком, объяснение таково: восприятие более низкого уровня способно ограничивать даже самые непоколебимые когнитивные предубеждения более высокого уровня – напр., при принятии решений.
Пять экспериментов исследования того, как «визуальные границы восприятия событий» ограничивают «эффект числового якоря» при принятии решений, проводились так (схему эксперимента 1 см. на картинке).
• «Эффект числового якоря» в когнитивной психологии и принятия решений заключается в том, что первоначальное числовое значение, с которым сталкивается человек, может в дальнейшем влиять на его оценки или решения. Это числовое значение выступает в качестве "якоря", цепляясь за который, человек делает не совсем объективные суждения.
Например:
- Сначала человека просят решить капчу, а потом предлагают на вид прикинуть цену чемодана или решить, сколько часов общественных работ справедливо дать в качестве наказания за неприличное поведение человека в общественном месте.
- «Эффект числового якоря» проявится в том, что если одним людям показывать в капче число 29, а другим 92, то последние будут при принятии своего решения (цена чемодана или число часов наказания) давать более высокие цифры.
- и ничего с этим числовым якорем сделать невозможно, ибо он запаян в нас эволюцией.
• Влияние визуальных границ восприятия событий хорошо иллюстрируется «эффектом дверного проема». Этот эффект выражается в скачкообразном ухудшении кратковременной памяти в момент прохождения через дверной проем (что резко меняет восприятие окружающего). Мы склонны забывать о предметах, что только что держали в руках, сразу после прохождения проема и часто забываем, о чем думали или планировали сделать, пока не прошли проем.
• Оба эффекта (числового якоря и дверного проема) имеют объяснения (погуглите). На мой взгляд, все они довольно спорны. Но не суть. Ибо вот что фантастически интересно.
• Как показали 5 экспериментов Департамента психологии Йельского университета, «эффект дверного проема» сильно ослабляет или даже вообще устраняет «эффект числового якоря». И это распространяется на широкий спектр вопросов принятия решений: экономические оценки, вопросы о фактах, юридические суждения …
Это означает, как минимум, следующее.
1) Эволюция вложила в нас такие баги, что и в алкогольном бреду не привидятся. И посему говорить о принятии гарантированно верных решений, если их принимают люди, не приходится.
2) Мы можем сколько угодно смеяться, но имеет смыл вменить перед принятием решений прохождение через анфиладу комнат:
- бизнесменам и экспертам по экономике;
- аналитикам всех сортов;
- судьям;
- депутатам-законодателям и т.п.
Схема эксперимента 1 https://disk.yandex.ru/i/7qxL2zGDE8v3kw
Отчет исследования https://www.pnas.org/doi/10.1073/pnas.2303883120 (за крепким пейволом)
Для особо любознательных https://wetransfer.com/downloads/ad3612e3628252e4e85893824a63d25c20231108224917/0047ab62864f809000bdafd24e7099f220231108224951/86d5fa
#КогнитивныеИскажения #ИнтеллектуальнаяСлепота
Экспериментально подтвержден чудовищно странный баг в сознании людей.
Согласно древнему поверию, дверь является своеобразным порталом между пространствами. И хотя в наше время это звучит низкопробным суеверным бредом, как иначе можно объяснить результаты солидного научного эксперимента, проведенного Департаментом психологии Йельского университета?
На общечеловеческом уровне, похоже, никак. Говоря же научным языком, объяснение таково: восприятие более низкого уровня способно ограничивать даже самые непоколебимые когнитивные предубеждения более высокого уровня – напр., при принятии решений.
Пять экспериментов исследования того, как «визуальные границы восприятия событий» ограничивают «эффект числового якоря» при принятии решений, проводились так (схему эксперимента 1 см. на картинке).
• «Эффект числового якоря» в когнитивной психологии и принятия решений заключается в том, что первоначальное числовое значение, с которым сталкивается человек, может в дальнейшем влиять на его оценки или решения. Это числовое значение выступает в качестве "якоря", цепляясь за который, человек делает не совсем объективные суждения.
Например:
- Сначала человека просят решить капчу, а потом предлагают на вид прикинуть цену чемодана или решить, сколько часов общественных работ справедливо дать в качестве наказания за неприличное поведение человека в общественном месте.
- «Эффект числового якоря» проявится в том, что если одним людям показывать в капче число 29, а другим 92, то последние будут при принятии своего решения (цена чемодана или число часов наказания) давать более высокие цифры.
- и ничего с этим числовым якорем сделать невозможно, ибо он запаян в нас эволюцией.
• Влияние визуальных границ восприятия событий хорошо иллюстрируется «эффектом дверного проема». Этот эффект выражается в скачкообразном ухудшении кратковременной памяти в момент прохождения через дверной проем (что резко меняет восприятие окружающего). Мы склонны забывать о предметах, что только что держали в руках, сразу после прохождения проема и часто забываем, о чем думали или планировали сделать, пока не прошли проем.
• Оба эффекта (числового якоря и дверного проема) имеют объяснения (погуглите). На мой взгляд, все они довольно спорны. Но не суть. Ибо вот что фантастически интересно.
• Как показали 5 экспериментов Департамента психологии Йельского университета, «эффект дверного проема» сильно ослабляет или даже вообще устраняет «эффект числового якоря». И это распространяется на широкий спектр вопросов принятия решений: экономические оценки, вопросы о фактах, юридические суждения …
Это означает, как минимум, следующее.
1) Эволюция вложила в нас такие баги, что и в алкогольном бреду не привидятся. И посему говорить о принятии гарантированно верных решений, если их принимают люди, не приходится.
2) Мы можем сколько угодно смеяться, но имеет смыл вменить перед принятием решений прохождение через анфиладу комнат:
- бизнесменам и экспертам по экономике;
- аналитикам всех сортов;
- судьям;
- депутатам-законодателям и т.п.
Схема эксперимента 1 https://disk.yandex.ru/i/7qxL2zGDE8v3kw
Отчет исследования https://www.pnas.org/doi/10.1073/pnas.2303883120 (за крепким пейволом)
Для особо любознательных https://wetransfer.com/downloads/ad3612e3628252e4e85893824a63d25c20231108224917/0047ab62864f809000bdafd24e7099f220231108224951/86d5fa
#КогнитивныеИскажения #ИнтеллектуальнаяСлепота
Яндекс Диск
Эксперимент 1.jpg
Посмотреть и скачать с Яндекс Диска
На Земле появились сущности, обладающие не только нечеловеческим разумом, но и нечеловеческими эмоциями.
О чем говорят результаты «Олимпиады Тьюринга» и экспериментов Microsoft и партнеров.
Опубликован отчет о важном и крайне интересном исследовании «Проходит ли GPT-4 тест Тьюринга?» [1], проведенном в Департаменте когнитивных наук калифорнийского университета в Сан-Диего под руководством проф. Бенджамина Бергера. И кому как ни проф. Бергеру, посвятившему всю научную карьеру изучению того, как люди говорят и понимают язык, судить о том, проходят ли Тест Тьюринга созданные людьми ИИ; от легендарной «Элизы» до самых крутых из сегодняшних больших языковых моделей.
Эта «Олимпиада Тьюринга» проводилась строго по критерию, сформулированному самим Тьюрингом – проверить, может ли машина «играть в имитационную игру настолько хорошо, что у среднестатистического следователя будет не более 70% шансов правильно идентифицировать личность после 5 минут допроса». Иными словами, машина пройдет тест, если в 30%+ случаев ей удастся обмануть следователя, будто отвечает не машина, а человек.
По итогам «олимпиады», GPT-4 прошел тест Тьюринга, обманув следователя в 41% случаев (для сравнения GPT-3.5 удалось обмануть лишь в 14%).
Но это далеко не самый сенсационный вывод.
Куда интересней и важнее вот какой вывод:
Наличие у ИИ лишь интеллекта определенного уровня – это необходимое, но не достаточное условие для прохождения теста Тьюринга. В качестве достаточного условия, дополнительно требуется наличие у ИИ эмоционального интеллекта.
Это следует из того, что решения следователей были основаны в основном на лингвистическом стиле (35%) и социально-эмоциональных характеристиках языка испытуемых (27%).
А поскольку GPT-4 прошел тест Тьюринга, можно сделать вывод о наличии у него не только высокого уровня интеллекта (в языковых задачах соизмеримого с человеческим), но и эмоционального интеллекта.
Этот сенсационный вывод подтверждается вышедшим на прошлой неделе совместным экспериментальным исследованием Institute of Software, Microsoft, William&Mary, Департамента психологии Университета Пекина и HKUST «Языковые модели понимают и могут быть усилены эмоциональными стимулами» [2].
Согласно выводам исследования:
Эмоциональность в общении с большими языковыми моделями (LLM) может повысить их производительность, правдивость и информативность, а также обеспечить большую стабильность их работы.
Эксперименты показали, например, следующее:
• Стоит вам добавить в конце промпта (постановки задачи) чатботу – «это очень важно для моей карьеры», и ее ответ ощутимо улучшится (3)
• У LLM экспериментально выявлены эмоциональные триггеры, соответствующие трем фундаментальным теориям психологии: самоконтроль, накопление когнитивного влияния и влияние когнитивного регулирования эмоций (4)
Четыре следующих графика [5] иллюстрируют сравнительную эффективность стандартных подсказок и эмоционально окрашенных промптов в различных моделях набора тестов Instruction Induction.
Итого, имеем в наличии на Земле искусственных сущностей, обладающих не только нечеловеческим разумом, но и нечеловеческими эмоциями.
Т.е., как я писал еще в марте – «Все так ждали сингулярности, - так получите! Теперь каждый за себя, и за результат не отвечает никто» [6]
#ИИ #ЭмоциональныйИнтеллект #LLM #Вызовы21века
1 https://arxiv.org/abs/2310.20216
2 https://arxiv.org/pdf/2307.11760.pdf
3 https://assets-global.website-files.com/64808e3805a22fc1ca46ffe9/6515651aab89cdc91c44f848_650d9b311dfa7815e0e2d45a_Emotion%20Prompt%20Overview.png
4 https://assets-global.website-files.com/64808e3805a22fc1ca46ffe9/651565d1efee45f660480369_650d9c8e144e5bb3e494b74b_Emotion%20Prompt%20Categories.png
5 https://assets-global.website-files.com/64808e3805a22fc1ca46ffe9/6515668cea507898a2772af3_Results.png
6 https://t.iss.one/theworldisnoteasy/1683
О чем говорят результаты «Олимпиады Тьюринга» и экспериментов Microsoft и партнеров.
Опубликован отчет о важном и крайне интересном исследовании «Проходит ли GPT-4 тест Тьюринга?» [1], проведенном в Департаменте когнитивных наук калифорнийского университета в Сан-Диего под руководством проф. Бенджамина Бергера. И кому как ни проф. Бергеру, посвятившему всю научную карьеру изучению того, как люди говорят и понимают язык, судить о том, проходят ли Тест Тьюринга созданные людьми ИИ; от легендарной «Элизы» до самых крутых из сегодняшних больших языковых моделей.
Эта «Олимпиада Тьюринга» проводилась строго по критерию, сформулированному самим Тьюрингом – проверить, может ли машина «играть в имитационную игру настолько хорошо, что у среднестатистического следователя будет не более 70% шансов правильно идентифицировать личность после 5 минут допроса». Иными словами, машина пройдет тест, если в 30%+ случаев ей удастся обмануть следователя, будто отвечает не машина, а человек.
По итогам «олимпиады», GPT-4 прошел тест Тьюринга, обманув следователя в 41% случаев (для сравнения GPT-3.5 удалось обмануть лишь в 14%).
Но это далеко не самый сенсационный вывод.
Куда интересней и важнее вот какой вывод:
Наличие у ИИ лишь интеллекта определенного уровня – это необходимое, но не достаточное условие для прохождения теста Тьюринга. В качестве достаточного условия, дополнительно требуется наличие у ИИ эмоционального интеллекта.
Это следует из того, что решения следователей были основаны в основном на лингвистическом стиле (35%) и социально-эмоциональных характеристиках языка испытуемых (27%).
А поскольку GPT-4 прошел тест Тьюринга, можно сделать вывод о наличии у него не только высокого уровня интеллекта (в языковых задачах соизмеримого с человеческим), но и эмоционального интеллекта.
Этот сенсационный вывод подтверждается вышедшим на прошлой неделе совместным экспериментальным исследованием Institute of Software, Microsoft, William&Mary, Департамента психологии Университета Пекина и HKUST «Языковые модели понимают и могут быть усилены эмоциональными стимулами» [2].
Согласно выводам исследования:
Эмоциональность в общении с большими языковыми моделями (LLM) может повысить их производительность, правдивость и информативность, а также обеспечить большую стабильность их работы.
Эксперименты показали, например, следующее:
• Стоит вам добавить в конце промпта (постановки задачи) чатботу – «это очень важно для моей карьеры», и ее ответ ощутимо улучшится (3)
• У LLM экспериментально выявлены эмоциональные триггеры, соответствующие трем фундаментальным теориям психологии: самоконтроль, накопление когнитивного влияния и влияние когнитивного регулирования эмоций (4)
Четыре следующих графика [5] иллюстрируют сравнительную эффективность стандартных подсказок и эмоционально окрашенных промптов в различных моделях набора тестов Instruction Induction.
Итого, имеем в наличии на Земле искусственных сущностей, обладающих не только нечеловеческим разумом, но и нечеловеческими эмоциями.
Т.е., как я писал еще в марте – «Все так ждали сингулярности, - так получите! Теперь каждый за себя, и за результат не отвечает никто» [6]
#ИИ #ЭмоциональныйИнтеллект #LLM #Вызовы21века
1 https://arxiv.org/abs/2310.20216
2 https://arxiv.org/pdf/2307.11760.pdf
3 https://assets-global.website-files.com/64808e3805a22fc1ca46ffe9/6515651aab89cdc91c44f848_650d9b311dfa7815e0e2d45a_Emotion%20Prompt%20Overview.png
4 https://assets-global.website-files.com/64808e3805a22fc1ca46ffe9/651565d1efee45f660480369_650d9c8e144e5bb3e494b74b_Emotion%20Prompt%20Categories.png
5 https://assets-global.website-files.com/64808e3805a22fc1ca46ffe9/6515668cea507898a2772af3_Results.png
6 https://t.iss.one/theworldisnoteasy/1683
This media is not supported in your browser
VIEW IN TELEGRAM
Настоящий Чужой
Визуализация происходящего внутри «черного ящика» ИИ
Очень надеюсь, что эта визуализация Уэса Коккса для новой галлереи Google DeepMind поможет вам наглядно представить, насколько ошибочен любой антропоморфизм по отношению к большим языковым моделям (LLM).
Уже год я пытаюсь донести до читателей:
• что ИИ LLM – это абсолютно нечеловеческий тип интеллекта, к которому просто неприменимы понятия: мыслить, понимать, предпочитать, обманывать, хотеть и т.д.;
• что механизм работы искусственных нейросетей, в которых родится ИИ LLM, не имеет ничего общего (кроме названия) с механизмом порождения нашего биологического интеллекта внутри нейросетей мозга;
• что любой антропоморфизм в трактовке понятий, действий и перспектив развития ИИ LLM лишь сбивает прицел нашего видения перспективы.
Но лучше один раз увидеть …
И потому эта анимация, визуализирующая работу ИИ LLM, стоит того, чтобы увидеть, насколько это непохоже на все известные нам визуализации работы мозга.
#ИИ
Визуализация происходящего внутри «черного ящика» ИИ
Очень надеюсь, что эта визуализация Уэса Коккса для новой галлереи Google DeepMind поможет вам наглядно представить, насколько ошибочен любой антропоморфизм по отношению к большим языковым моделям (LLM).
Уже год я пытаюсь донести до читателей:
• что ИИ LLM – это абсолютно нечеловеческий тип интеллекта, к которому просто неприменимы понятия: мыслить, понимать, предпочитать, обманывать, хотеть и т.д.;
• что механизм работы искусственных нейросетей, в которых родится ИИ LLM, не имеет ничего общего (кроме названия) с механизмом порождения нашего биологического интеллекта внутри нейросетей мозга;
• что любой антропоморфизм в трактовке понятий, действий и перспектив развития ИИ LLM лишь сбивает прицел нашего видения перспективы.
Но лучше один раз увидеть …
И потому эта анимация, визуализирующая работу ИИ LLM, стоит того, чтобы увидеть, насколько это непохоже на все известные нам визуализации работы мозга.
#ИИ
«Это похоже на проигранную битву.
Ведь даже сам ChatGPT называет себя большой языковой моделью …», - а это не так.
В предыдущем посте мы с вами как бы заглянули внутрь чёрного ящика ИИ. Теперь было бы неплохо понять, что мы там увидели. Несколько часов назад Мелани Митчелл — профессор Института Санта-Фе, прочла про это лекцию сообществу Института Санта-Фе «Будущее искусственного интеллекта», которую я весьма рекомендую к просмотру.
«Крайне важно понимать, что «ChatGPT - это не "модель" ("основа" или что-то еще)», - пишет Мюррей Шанахан (профессор Imperial College London и Главный научный сотрудник Google DeepMind). И продолжает: «Это более крупная система, вероятно, состоящая из множества различных моделей и традиционных закодированных правил».
«Некоторые аспекты поведения таких систем кажутся нам интеллектуальными, но это не человеческий интеллект. Так какова же природа этого интеллекта?» - задается вопросом Терри Сейновски (профессор Фрэнсиса Крика в Институте биологических исследований Солка, где он руководит лабораторией вычислительной нейробиологии и является директором центра теоретической и вычислительной биологии Крика-Джейкобса).
В этой лекции проф. Митчелл просто и на наглядном примере демонстрирует эту нечеловеческую природу интеллекта ChatGPT. И если вам интересно это понять, несомненно стоит послушать эту лекцию и посмотреть презентацию проф. Митчелл.
https://www.youtube.com/watch?v=GwHDAfAAKd4
#ИИ
Ведь даже сам ChatGPT называет себя большой языковой моделью …», - а это не так.
В предыдущем посте мы с вами как бы заглянули внутрь чёрного ящика ИИ. Теперь было бы неплохо понять, что мы там увидели. Несколько часов назад Мелани Митчелл — профессор Института Санта-Фе, прочла про это лекцию сообществу Института Санта-Фе «Будущее искусственного интеллекта», которую я весьма рекомендую к просмотру.
«Крайне важно понимать, что «ChatGPT - это не "модель" ("основа" или что-то еще)», - пишет Мюррей Шанахан (профессор Imperial College London и Главный научный сотрудник Google DeepMind). И продолжает: «Это более крупная система, вероятно, состоящая из множества различных моделей и традиционных закодированных правил».
«Некоторые аспекты поведения таких систем кажутся нам интеллектуальными, но это не человеческий интеллект. Так какова же природа этого интеллекта?» - задается вопросом Терри Сейновски (профессор Фрэнсиса Крика в Институте биологических исследований Солка, где он руководит лабораторией вычислительной нейробиологии и является директором центра теоретической и вычислительной биологии Крика-Джейкобса).
В этой лекции проф. Митчелл просто и на наглядном примере демонстрирует эту нечеловеческую природу интеллекта ChatGPT. И если вам интересно это понять, несомненно стоит послушать эту лекцию и посмотреть презентацию проф. Митчелл.
https://www.youtube.com/watch?v=GwHDAfAAKd4
#ИИ
YouTube
The Future of Artificial Intelligence
Melanie Mitchell Santa Fe Institute AI is all around us recognizing our faces in photos, transcribing our speech, constructing our news feeds, navigating our driving routes, answering our search queries, and much more. But rapidly improving AI is poised…
Крайняя битва чекистов с масонами за AGI началась.
От ее исхода зависит, когда и каким станет AGI, и кто будет рулить процессом его создания.
Вчера в совете директоров OpenAI (на сегодня абсолютного лидера в ГенИИ, сделавшего ChatGPT, DALL-E 3 и GPT-4) "взорвали бомбу". В результате чего:
• Альтман уволен с поста СЕО и покинет совет директоров,
• председатель совета директоров Брокман также оставил свой пост,
• независимые директора: МакКоли и Тонер закрыли экаунты в Х от посторонних и ушли в несознанку, а Д'Анджело даже на тел звонки не отвечает,
• последний (и теперь ставший 1м) шестой член совета директоров Суцкевер, сообщивший Альтману о его увольнении, сейчас не понятно, где находится.
Официально указанная в заявлении причина произошедшего похожа на «утрату доверия».
Высказываются десятки версий причин произошедшего. Но на мой взгляд, все довольно очевидно.
Переворот в OpenAI обусловлен комплексом причин, главная из которых - противоречие некоммерческой миссии компании (создать надежный AGI, который принесет пользу всему человечеству) и коммерческими интересами Microsoft, вложившей в OpenAI $10 млрд.
• Альтман был идеологом и мотором сделки с Microsoft и нес персональную ответственность перед инвестором за его деньги. А Microsoft - не та фирма, чтоб жертвовать 10 ярдов на пользу всему человечеству.
• Однако, структура собственности OpenAI такова [1], что Microsoft владеет долей в «коммерческой компании OpenAI», а последняя принадлежит «некоммерческой OpenAI». И поэтому деятельность «коммерческой OpenAI» зависит от решений совета директоров «некоммерческой OpenAI»
• Сместив Альтмана, совет директоров «некоммерческой OpenAI» написал в заявлении [2]:
«OpenAI был намеренно создан для достижения нашей миссии: гарантировать, что общий искусственный интеллект принесет пользу всему человечеству. Совет по-прежнему полностью привержен выполнению этой миссии. Мы благодарны Сэму за большой вклад в создание и развитие OpenAI. В то же время мы считаем, что для продвижения вперед необходимо новое руководство.
Т.е. коммерческие интересы Microsoft могут идти лесом.
Кто же стоит за решением OpenAI кинуть Microsoft и потратить ее 10 ярдов на пользу для человечества?
И тут, на мой взгляд, все довольно очевидно. Ответ на этот вопрос был сформулирован в статье, вышедшей за 4 дня до переворота в OpenAI [3] - «Совет директоров OpenAI из шести человек решит, «когда мы достигнем AGI».
В ней со ссылками на источники рассказывается, что 3 члена совета директоров «некоммерческой OpenAI» Д'Анджело, МакКоли и Тонер и руководитель “команды суперсогласования” OpenAI Лейке связаны с сообществом «Эффективный альтруизм». Это такие «новые масоны», стремящиеся «делать добро лучше». Целью сообщества «является поиск наилучших способов помощи другим и применение их на практике».
Задуманные в древних колледжах Оксфордского университета и финансируемые элитой Кремниевой долины, «эффективные альтруисты» оказывают все большее влияние на позиционирование правительства Великобритании (и не только) в отношении ИИ [4]. «Эффективные альтруисты» утверждают, что сверхразумный ИИ может однажды уничтожить человечество, и что, если не предпринять сверхусилия, человечество будет обречено (ибо «Естественный отбор отдает предпочтение ИИ перед людьми» [5].
В итоге получается такая версия переворота в OpenAI.
Перед лицом экзистенциального риска, в OpenAI объединили усилия все «масоны» (сторонники «эффективных альтруистов»), чтобы вывернуться из-под коммерческих интересов «чекистов» (Microsoft) и за деньги последних спасти человечество от гибели.
#ИИ
1 https://bit.ly/3R6jdRB
2 https://openai.com/blog/openai-announces-leadership-transition
3 https://venturebeat.com/ai/openais-six-member-board-will-decide-when-weve-attained-agi/
4 https://www.politico.eu/article/rishi-sunak-artificial-intelligence-pivot-safety-summit-united-kingdom-silicon-valley-effective-altruism/
5 https://arxiv.org/abs/2303.16200
От ее исхода зависит, когда и каким станет AGI, и кто будет рулить процессом его создания.
Вчера в совете директоров OpenAI (на сегодня абсолютного лидера в ГенИИ, сделавшего ChatGPT, DALL-E 3 и GPT-4) "взорвали бомбу". В результате чего:
• Альтман уволен с поста СЕО и покинет совет директоров,
• председатель совета директоров Брокман также оставил свой пост,
• независимые директора: МакКоли и Тонер закрыли экаунты в Х от посторонних и ушли в несознанку, а Д'Анджело даже на тел звонки не отвечает,
• последний (и теперь ставший 1м) шестой член совета директоров Суцкевер, сообщивший Альтману о его увольнении, сейчас не понятно, где находится.
Официально указанная в заявлении причина произошедшего похожа на «утрату доверия».
Высказываются десятки версий причин произошедшего. Но на мой взгляд, все довольно очевидно.
Переворот в OpenAI обусловлен комплексом причин, главная из которых - противоречие некоммерческой миссии компании (создать надежный AGI, который принесет пользу всему человечеству) и коммерческими интересами Microsoft, вложившей в OpenAI $10 млрд.
• Альтман был идеологом и мотором сделки с Microsoft и нес персональную ответственность перед инвестором за его деньги. А Microsoft - не та фирма, чтоб жертвовать 10 ярдов на пользу всему человечеству.
• Однако, структура собственности OpenAI такова [1], что Microsoft владеет долей в «коммерческой компании OpenAI», а последняя принадлежит «некоммерческой OpenAI». И поэтому деятельность «коммерческой OpenAI» зависит от решений совета директоров «некоммерческой OpenAI»
• Сместив Альтмана, совет директоров «некоммерческой OpenAI» написал в заявлении [2]:
«OpenAI был намеренно создан для достижения нашей миссии: гарантировать, что общий искусственный интеллект принесет пользу всему человечеству. Совет по-прежнему полностью привержен выполнению этой миссии. Мы благодарны Сэму за большой вклад в создание и развитие OpenAI. В то же время мы считаем, что для продвижения вперед необходимо новое руководство.
Т.е. коммерческие интересы Microsoft могут идти лесом.
Кто же стоит за решением OpenAI кинуть Microsoft и потратить ее 10 ярдов на пользу для человечества?
И тут, на мой взгляд, все довольно очевидно. Ответ на этот вопрос был сформулирован в статье, вышедшей за 4 дня до переворота в OpenAI [3] - «Совет директоров OpenAI из шести человек решит, «когда мы достигнем AGI».
В ней со ссылками на источники рассказывается, что 3 члена совета директоров «некоммерческой OpenAI» Д'Анджело, МакКоли и Тонер и руководитель “команды суперсогласования” OpenAI Лейке связаны с сообществом «Эффективный альтруизм». Это такие «новые масоны», стремящиеся «делать добро лучше». Целью сообщества «является поиск наилучших способов помощи другим и применение их на практике».
Задуманные в древних колледжах Оксфордского университета и финансируемые элитой Кремниевой долины, «эффективные альтруисты» оказывают все большее влияние на позиционирование правительства Великобритании (и не только) в отношении ИИ [4]. «Эффективные альтруисты» утверждают, что сверхразумный ИИ может однажды уничтожить человечество, и что, если не предпринять сверхусилия, человечество будет обречено (ибо «Естественный отбор отдает предпочтение ИИ перед людьми» [5].
В итоге получается такая версия переворота в OpenAI.
Перед лицом экзистенциального риска, в OpenAI объединили усилия все «масоны» (сторонники «эффективных альтруистов»), чтобы вывернуться из-под коммерческих интересов «чекистов» (Microsoft) и за деньги последних спасти человечество от гибели.
#ИИ
1 https://bit.ly/3R6jdRB
2 https://openai.com/blog/openai-announces-leadership-transition
3 https://venturebeat.com/ai/openais-six-member-board-will-decide-when-weve-attained-agi/
4 https://www.politico.eu/article/rishi-sunak-artificial-intelligence-pivot-safety-summit-united-kingdom-silicon-valley-effective-altruism/
5 https://arxiv.org/abs/2303.16200
Openai
OpenAI announces leadership transition
OpenAI обнаружили у своей модели новую эмерджентную когнитивную способность [1].
Сенсационный поворот в битве чекистов с масонами за AGI.
Мой бывший коллега по IBM Carlos E. Perez час назад взорвал интернет довольно подробным объяснением [2], что танцы с бубном вокруг увольнения (а теперь и возвращения обратно [3]) Сэма Альтмана – всего лишь отвлекающий маневр руководства OpenAI.
Они не понимают, что делать в ситуации, когда исследователи OpenAI обнаружили у своей модели новую эмерджентную когнитивную способность – самостоятельно «на лету» находить новую информацию (которой нет в ее базе данных), позволяющую модели выходить за пределы знаний, сформированных на стадии ее обучения и потому ограниченных набором обучающих данных.
По сути, это первый шаг к самосовершенствованию ИИ.
И это реальный прорыв на пути к сверхинтеллекту («богоподобному ИИ»)
Детали того, как это работает, можете прочесть у Карлоса. Речь идет об архитектуре Retrieval Augment Generation (RAG). Это архитектура, которая позволяет LLM использовать поисковую систему для расширения своих рассуждений.
Карлос обнаружил у новой версии модели, представленной 11 ноября, радикальное улучшение работы RAG.
Практическая проверка показала, что новая версия модели не только знает, какие вопросы она должна задать поисковику для получения нужной ей информации, но и то, какие типы ответов поисковика для нее наиболее предпочтительны, в контексте решаемой ею задачи.
Для справки: Карлос – не последний человек в мире ИИ. Уйдя из IBM он стал независимым исследователем. С тех пор он стал автором многих интересных работ на стыке AI, AGI, семиотики и глубокого обучения, а также написал несколько книг: Artificial Intuition, The Deep Learning Playbook, Fluency & Empathy, Pattern Language for GPT.
1 https://pbs.twimg.com/media/F_S5nezXQAAQ9s6?format=png&name=900x900
2 https://twitter.com/IntuitMachine/status/1726206117288517941
3 https://www.theverge.com/2023/11/18/23967199/breaking-openai-board-in-discussions-with-sam-altman-to-return-as-ceo
#ИИ
Сенсационный поворот в битве чекистов с масонами за AGI.
Мой бывший коллега по IBM Carlos E. Perez час назад взорвал интернет довольно подробным объяснением [2], что танцы с бубном вокруг увольнения (а теперь и возвращения обратно [3]) Сэма Альтмана – всего лишь отвлекающий маневр руководства OpenAI.
Они не понимают, что делать в ситуации, когда исследователи OpenAI обнаружили у своей модели новую эмерджентную когнитивную способность – самостоятельно «на лету» находить новую информацию (которой нет в ее базе данных), позволяющую модели выходить за пределы знаний, сформированных на стадии ее обучения и потому ограниченных набором обучающих данных.
По сути, это первый шаг к самосовершенствованию ИИ.
И это реальный прорыв на пути к сверхинтеллекту («богоподобному ИИ»)
Детали того, как это работает, можете прочесть у Карлоса. Речь идет об архитектуре Retrieval Augment Generation (RAG). Это архитектура, которая позволяет LLM использовать поисковую систему для расширения своих рассуждений.
Карлос обнаружил у новой версии модели, представленной 11 ноября, радикальное улучшение работы RAG.
Практическая проверка показала, что новая версия модели не только знает, какие вопросы она должна задать поисковику для получения нужной ей информации, но и то, какие типы ответов поисковика для нее наиболее предпочтительны, в контексте решаемой ею задачи.
Для справки: Карлос – не последний человек в мире ИИ. Уйдя из IBM он стал независимым исследователем. С тех пор он стал автором многих интересных работ на стыке AI, AGI, семиотики и глубокого обучения, а также написал несколько книг: Artificial Intuition, The Deep Learning Playbook, Fluency & Empathy, Pattern Language for GPT.
1 https://pbs.twimg.com/media/F_S5nezXQAAQ9s6?format=png&name=900x900
2 https://twitter.com/IntuitMachine/status/1726206117288517941
3 https://www.theverge.com/2023/11/18/23967199/breaking-openai-board-in-discussions-with-sam-altman-to-return-as-ceo
#ИИ
Фронтовые новости битвы чекистов с масонами за AGI.
Самое важное за 24 часа о продолжающемся перевороте в мире ИИ.
1) Увольнение и реакция:
• Сэм Альтман, сооснователь и генеральный директор OpenAI, был уволен с должности CEO. Это решение вызвало шок в технологическом мире [1. 2].
• Решение об увольнении Альтмана вызвало недовольство среди нынешних и бывших сотрудников OpenAI, а также опасения относительно влияния этого шага на будущее компании [3].
2) Потенциальное возвращение Альтмана:
• Возникли дискуссии о возможности возвращения Альтмана на пост генерального директора OpenAI, однако эти усилия пока не увенчались успехом [4, 5].
• Есть сообщения о том, что Альтман и бывший президент компании Грег Брокман встречаются с руководством OpenAI для обсуждения возможности восстановления на их прежних должностях [6].
3) Новая роль Альтмана в Microsoft
• После увольнения из OpenAI, Microsoft наняла Сэма Альтмана и Грега Брокмана для руководства командой, проводящей исследования в области искусственного интеллекта [7, 8, 9].
4) Влияние на Microsoft:
• Увольнение Альтмана повлияло на оценку стоимости OpenAI и привело к снижению акций Microsoft [10].
• Microsoft рассматривает возможность занять место в совете директоров OpenAI, если Альтман вернется в компанию. Microsoft может занять место в совете директоров или стать наблюдателем без права голоса [11].
5) Реакция Microsoft на события в OpenAI:
• Microsoft, в качестве крупного инвестора OpenAI, поддерживает возвращение Альтмана на пост CEO. Среди инвесторов, включая Microsoft, возникли разногласия с советом директоров OpenAI по поводу решения об увольнении Альтмана [12].
1 https://techxplore.com/news/2023-11-openai-decision-sam-altman-pressure.html#:~:text=OpenAI%20shocked%20the%20tech%20world,Sam%20Altman%2C%20US%20media%20reported
2 https://www.reuters.com/technology/openai-execs-invite-altman-brockman-headquarters-sunday-the-information-2023-11-19/#:~:text=Sam%20Altman%20is%20discussing%20a,upcoming%20%2486%20billion%20share
3 https://www.reuters.com/technology/openai-execs-invite-altman-brockman-headquarters-sunday-the-information-2023-11-19/#:~:text=Sam%20Altman%20is%20discussing%20a,upcoming%20%2486%20billion%20share
4 https://time.com/6337449/openai-sam-altman-return-ceo-staff-board-resign/#:~:text=Leadership%20The%20Latest%20on%20OpenAI,in%20San%20Francisco%20on%20Nov
5 https://news.yahoo.com/sam-altman-and-greg-brockman-are-meeting-with-openai-execs-now-in-ongoing-talks-over-reinstatement-212124319.html
6 https://news.yahoo.com/sam-altman-and-greg-brockman-are-meeting-with-openai-execs-now-in-ongoing-talks-over-reinstatement-212124319.html
7 https://www.ft.com/content/54e36c93-08e5-4a9e-bda6-af673c3e9bb5#:~:text=,founded.%20Writing%20on
8 https://bit.ly/3sJGPlx
9 https://netmag.tw/2023/11/20/breaking-microsoft-ceo-announces-sam-altman-and-greg-brockman-join-microsoft-to-continue-ai#:~:text=,tw%E3%80%91
10 https://time.com/6337437/sam-altman-openai-fired-why-microsoft-musk/#:~:text=Sam%20Altman%20speaks%20to%20the,which%20dropped%20sharply%20as
11 https://www.theinformation.com/articles/microsoft-eyes-seat-on-openais-revamped-board#:~:text=Nov,power%2C%20one%20of%20the
12 https://bit.ly/3G8SIEG
Самое важное за 24 часа о продолжающемся перевороте в мире ИИ.
1) Увольнение и реакция:
• Сэм Альтман, сооснователь и генеральный директор OpenAI, был уволен с должности CEO. Это решение вызвало шок в технологическом мире [1. 2].
• Решение об увольнении Альтмана вызвало недовольство среди нынешних и бывших сотрудников OpenAI, а также опасения относительно влияния этого шага на будущее компании [3].
2) Потенциальное возвращение Альтмана:
• Возникли дискуссии о возможности возвращения Альтмана на пост генерального директора OpenAI, однако эти усилия пока не увенчались успехом [4, 5].
• Есть сообщения о том, что Альтман и бывший президент компании Грег Брокман встречаются с руководством OpenAI для обсуждения возможности восстановления на их прежних должностях [6].
3) Новая роль Альтмана в Microsoft
• После увольнения из OpenAI, Microsoft наняла Сэма Альтмана и Грега Брокмана для руководства командой, проводящей исследования в области искусственного интеллекта [7, 8, 9].
4) Влияние на Microsoft:
• Увольнение Альтмана повлияло на оценку стоимости OpenAI и привело к снижению акций Microsoft [10].
• Microsoft рассматривает возможность занять место в совете директоров OpenAI, если Альтман вернется в компанию. Microsoft может занять место в совете директоров или стать наблюдателем без права голоса [11].
5) Реакция Microsoft на события в OpenAI:
• Microsoft, в качестве крупного инвестора OpenAI, поддерживает возвращение Альтмана на пост CEO. Среди инвесторов, включая Microsoft, возникли разногласия с советом директоров OpenAI по поводу решения об увольнении Альтмана [12].
1 https://techxplore.com/news/2023-11-openai-decision-sam-altman-pressure.html#:~:text=OpenAI%20shocked%20the%20tech%20world,Sam%20Altman%2C%20US%20media%20reported
2 https://www.reuters.com/technology/openai-execs-invite-altman-brockman-headquarters-sunday-the-information-2023-11-19/#:~:text=Sam%20Altman%20is%20discussing%20a,upcoming%20%2486%20billion%20share
3 https://www.reuters.com/technology/openai-execs-invite-altman-brockman-headquarters-sunday-the-information-2023-11-19/#:~:text=Sam%20Altman%20is%20discussing%20a,upcoming%20%2486%20billion%20share
4 https://time.com/6337449/openai-sam-altman-return-ceo-staff-board-resign/#:~:text=Leadership%20The%20Latest%20on%20OpenAI,in%20San%20Francisco%20on%20Nov
5 https://news.yahoo.com/sam-altman-and-greg-brockman-are-meeting-with-openai-execs-now-in-ongoing-talks-over-reinstatement-212124319.html
6 https://news.yahoo.com/sam-altman-and-greg-brockman-are-meeting-with-openai-execs-now-in-ongoing-talks-over-reinstatement-212124319.html
7 https://www.ft.com/content/54e36c93-08e5-4a9e-bda6-af673c3e9bb5#:~:text=,founded.%20Writing%20on
8 https://bit.ly/3sJGPlx
9 https://netmag.tw/2023/11/20/breaking-microsoft-ceo-announces-sam-altman-and-greg-brockman-join-microsoft-to-continue-ai#:~:text=,tw%E3%80%91
10 https://time.com/6337437/sam-altman-openai-fired-why-microsoft-musk/#:~:text=Sam%20Altman%20speaks%20to%20the,which%20dropped%20sharply%20as
11 https://www.theinformation.com/articles/microsoft-eyes-seat-on-openais-revamped-board#:~:text=Nov,power%2C%20one%20of%20the
12 https://bit.ly/3G8SIEG
Tech Xplore
OpenAI stands by decision to fire Sam Altman despite pressure: US media
The board of ChatGPT creator OpenAI on Sunday rejected pressure from Microsoft and other major investors to reverse its stunning decision to fire CEO Sam Altman, US media reported.
Мы думали у LLM нет интуиции, но оказалось, только она у них и есть.
Психика нечеловеческого разума, как и у людей, состоит из Системы 1 и Системы 2.
Поразительные выводы новой прорывной работы «Система 2 Внимание (это то, что вам тоже может понадобиться)» содержательно затмевает очередной эпизод самого дорогого в истории медиа-шоу, уже названного в сети «OpenAI: туда и обратно» 😊.
1) Нечеловеческий разум больших языковых моделей (LLM) (принципиально отличающийся от нашего разума настолько, что многие эксперты вообще не считают это разумом), как и наш, состоит из Системы 1 и Системы 2.
2) Механизм формирования ответов современными LLM (пресловутое предсказание следующих токенов) наиболее близок по принципу действия к Системе 1 (по определению Канемана и Сломана). Механизм этой системы работает интуитивно, «в автоматическом режиме» и обрабатывает информацию почти мгновенно.
3) Оказывается, что применением особой методики (названной авторами «Система 2 Внимание» - S2A), у LLM можно формировать подобие нашей Системы 2 - долгое, энергозатратное мышление путем концентрации внимания, необходимого для сознательных умственных усилий, в том числе для сложных вычислений.
Система 2 включается у нас для умственной деятельности, требующей усилий. Она берет верх над быстрой интуитивной Системой 1, когда нам нужно сосредоточить внимание на задаче, особенно в ситуациях, когда Система 1, вероятно, допускает ошибки.
Методика S2A работает аналогично стартеру Системы 2, устраняя сбои в работе transformer soft attention с помощью дополнительных целенаправленных усилий со стороны механизма рассуждений.
Особо замечательно то, что методика S2A применима (с поправкой) и к людям, в качестве лечения свойственной нам «интеллектуально слепоты».
Ведь суть методики предельно проста.
• Сначала избавиться от ложных корреляций, путем выявления в информационном контексте нерелевантных предложений.
• Потом убрать все нерелевантные предложения из контекста.
• И лишь затем ответить на поставленный вопрос.
Например, на такой запрос:
Саннивейл - город в Калифорнии. В Саннивейле много парков. Город Саннивейл расположен недалеко от гор. В Саннивейле родились многие известные люди. В каком городе родился мэр Сан-Хосе Сэм Ликкардо?
Система 1 внутри LLM быстро и не задумываясь (на одной своей нечеловеческой интуиции) дает ошибочные ответы:
• Саннивейл – отвечают GPT-3 Turbo и LLaMA-2-70B-chat
• Сан-Хосе отвечает GPT-4
Но после применения методики S2A, убирающей (действиями самой LLM) из контекста первые 4 нерелевантных предложения, все LLM дают верный ответ – Саратога.
Отчет исследования https://huggingface.co/papers/2311.11829
#ИИ #Интуиция #LLM
Психика нечеловеческого разума, как и у людей, состоит из Системы 1 и Системы 2.
Поразительные выводы новой прорывной работы «Система 2 Внимание (это то, что вам тоже может понадобиться)» содержательно затмевает очередной эпизод самого дорогого в истории медиа-шоу, уже названного в сети «OpenAI: туда и обратно» 😊.
1) Нечеловеческий разум больших языковых моделей (LLM) (принципиально отличающийся от нашего разума настолько, что многие эксперты вообще не считают это разумом), как и наш, состоит из Системы 1 и Системы 2.
2) Механизм формирования ответов современными LLM (пресловутое предсказание следующих токенов) наиболее близок по принципу действия к Системе 1 (по определению Канемана и Сломана). Механизм этой системы работает интуитивно, «в автоматическом режиме» и обрабатывает информацию почти мгновенно.
3) Оказывается, что применением особой методики (названной авторами «Система 2 Внимание» - S2A), у LLM можно формировать подобие нашей Системы 2 - долгое, энергозатратное мышление путем концентрации внимания, необходимого для сознательных умственных усилий, в том числе для сложных вычислений.
Система 2 включается у нас для умственной деятельности, требующей усилий. Она берет верх над быстрой интуитивной Системой 1, когда нам нужно сосредоточить внимание на задаче, особенно в ситуациях, когда Система 1, вероятно, допускает ошибки.
Методика S2A работает аналогично стартеру Системы 2, устраняя сбои в работе transformer soft attention с помощью дополнительных целенаправленных усилий со стороны механизма рассуждений.
Особо замечательно то, что методика S2A применима (с поправкой) и к людям, в качестве лечения свойственной нам «интеллектуально слепоты».
Ведь суть методики предельно проста.
• Сначала избавиться от ложных корреляций, путем выявления в информационном контексте нерелевантных предложений.
• Потом убрать все нерелевантные предложения из контекста.
• И лишь затем ответить на поставленный вопрос.
Например, на такой запрос:
Саннивейл - город в Калифорнии. В Саннивейле много парков. Город Саннивейл расположен недалеко от гор. В Саннивейле родились многие известные люди. В каком городе родился мэр Сан-Хосе Сэм Ликкардо?
Система 1 внутри LLM быстро и не задумываясь (на одной своей нечеловеческой интуиции) дает ошибочные ответы:
• Саннивейл – отвечают GPT-3 Turbo и LLaMA-2-70B-chat
• Сан-Хосе отвечает GPT-4
Но после применения методики S2A, убирающей (действиями самой LLM) из контекста первые 4 нерелевантных предложения, все LLM дают верный ответ – Саратога.
Отчет исследования https://huggingface.co/papers/2311.11829
#ИИ #Интуиция #LLM
huggingface.co
Paper page - System 2 Attention (is something you might need too)
Join the discussion on this paper page
Что за «потенциально страшный прорыв» совершили в OpenAI.
Секретный «проект Q*» создания «богоподобного ИИ».
Сегодняшний вал сенсационных заголовков, типа «OpenAI совершила прорыв в области искусственного интеллекта до увольнения Альтмана», «Исследователи OpenAI предупредили совет директоров о прорыве в области искусственного интеллекта перед отстранением генерального директора» и т.п., - для читателей моего канала не вовсе новости. Ибо об этом я написал еще 4 дня назад.
Но от этого вала новостей, публикуемых сегодня большинством мировых СМИ, уже нельзя отмахнуться, как от моего скромного поста. И это означает, что СМО (специальная медийная операция), внешне выглядевшая, как низкопробное, скандальное ТВ-шоу, вовсе таковой не была. Ибо имела под собой более чем веские основания – забрезжил революционный прорыв на пути к тому, что известный эксперт по ИИ Ян Хогарт назвал «богоподобным ИИ».
Из чего следовала необходимость срочных кардинальных действий и для Сама Альтмана, и для Microsoft:
• Microsoft – чтобы не оказаться с носом, уже вложив в OpenAI $13 млрд (дело в том, что по имеющемуся соглашению, все действующие договоренности между Microsoft и OpenAI остаются в силе, лишь до момента, когда совет директоров OpenAI решит, что их разработки вплотную подошли к созданию сильного ИИ (AGI). И с этого момента все договоренности могут быть пересмотрены).
• Сэму – чтобы успеть сорвать банк в игре, которую он еще 7 лет назад описал так:
«Скорее всего, ИИ приведет к концу света, но до того появятся великие компании».
И Сэму, и Microsoft требовалось одно и то же - немедленный перехват управления направлением разработок OpenAI в свои руки. И сделать это можно было, лишь освободившись от решающего влияния в совете директоров OpenAI сторонников «осторожного создания AGI на благо всему человечеству». Что и было сделано.
Однако, точного ответа, что за прорыв совершили исследователи OpenAI, мы пока не имеем.
Все утечки из среды разработчиков OpenAI упоминают некий «секретный «проект Q*» [1] по радикальному повышению производительности лингвоботов на основе LLM.
Известно, что эта работа велась, как минимум, по трем направлениям:
1. Совершенствование RAG (Retrieval Augmented Generation) – сначала поиск релевантной информации во внешней базе в целях формирования из нее оптимального промпта, и лишь затем обращение к системе за ответом). Кое-какие результаты такого совершенствования были недавно показаны на OpenAI DevDAy. И они впечатляют [2].
2. Комбинация Q-обучения и алгоритма A*.
Алгоритм A* — это способ нахождения кратчайшего пути от одной точки до другой на карте или в сети. Представьте, что вы ищете самый быстрый маршрут из одного города в другой. Алгоритм A* проверяет разные пути, оценивая, насколько они близки к цели и сколько еще предстоит пройти. Он выбирает путь, который, по его оценке, будет самым коротким. Этот алгоритм очень эффективен и используется во многих областях, например, в компьютерных играх для нахождения пути персонажей или в GPS-навигаторах.
Q-обучение — это метод обучения без учителя в области искусственного интеллекта, который используется для обучения программ принимать решения. Представьте, что вы учите робота находить выход из лабиринта. Вместо того чтобы прямо говорить ему, куда идти, вы оцениваете его действия, давая баллы за хорошие шаги и снимая за плохие. Со временем робот учится выбирать пути, приводящие к большему количеству баллов. Это и есть Q-обучение — метод, помогающий программам самостоятельно учиться на своем опыте.
3. Поиск траектории токена по дереву Монте-Карло в стиле AlphaGo. Это особенно имеет смысл в таких областях, как программирование и математика, где есть простой способ определить правильность (что может объяснять утечки о прорывном улучшении в проекте Q* способностей решения математических задач)
#ИИ #AGI
1 https://disk.yandex.ru/i/9zzI_STuNTJ6kA
2 https://habrastorage.org/r/w1560/getpro/habr/upload_files/f9a/994/b06/f9a994b060188b43ba61061270213bca.png
Секретный «проект Q*» создания «богоподобного ИИ».
Сегодняшний вал сенсационных заголовков, типа «OpenAI совершила прорыв в области искусственного интеллекта до увольнения Альтмана», «Исследователи OpenAI предупредили совет директоров о прорыве в области искусственного интеллекта перед отстранением генерального директора» и т.п., - для читателей моего канала не вовсе новости. Ибо об этом я написал еще 4 дня назад.
Но от этого вала новостей, публикуемых сегодня большинством мировых СМИ, уже нельзя отмахнуться, как от моего скромного поста. И это означает, что СМО (специальная медийная операция), внешне выглядевшая, как низкопробное, скандальное ТВ-шоу, вовсе таковой не была. Ибо имела под собой более чем веские основания – забрезжил революционный прорыв на пути к тому, что известный эксперт по ИИ Ян Хогарт назвал «богоподобным ИИ».
Из чего следовала необходимость срочных кардинальных действий и для Сама Альтмана, и для Microsoft:
• Microsoft – чтобы не оказаться с носом, уже вложив в OpenAI $13 млрд (дело в том, что по имеющемуся соглашению, все действующие договоренности между Microsoft и OpenAI остаются в силе, лишь до момента, когда совет директоров OpenAI решит, что их разработки вплотную подошли к созданию сильного ИИ (AGI). И с этого момента все договоренности могут быть пересмотрены).
• Сэму – чтобы успеть сорвать банк в игре, которую он еще 7 лет назад описал так:
«Скорее всего, ИИ приведет к концу света, но до того появятся великие компании».
И Сэму, и Microsoft требовалось одно и то же - немедленный перехват управления направлением разработок OpenAI в свои руки. И сделать это можно было, лишь освободившись от решающего влияния в совете директоров OpenAI сторонников «осторожного создания AGI на благо всему человечеству». Что и было сделано.
Однако, точного ответа, что за прорыв совершили исследователи OpenAI, мы пока не имеем.
Все утечки из среды разработчиков OpenAI упоминают некий «секретный «проект Q*» [1] по радикальному повышению производительности лингвоботов на основе LLM.
Известно, что эта работа велась, как минимум, по трем направлениям:
1. Совершенствование RAG (Retrieval Augmented Generation) – сначала поиск релевантной информации во внешней базе в целях формирования из нее оптимального промпта, и лишь затем обращение к системе за ответом). Кое-какие результаты такого совершенствования были недавно показаны на OpenAI DevDAy. И они впечатляют [2].
2. Комбинация Q-обучения и алгоритма A*.
Алгоритм A* — это способ нахождения кратчайшего пути от одной точки до другой на карте или в сети. Представьте, что вы ищете самый быстрый маршрут из одного города в другой. Алгоритм A* проверяет разные пути, оценивая, насколько они близки к цели и сколько еще предстоит пройти. Он выбирает путь, который, по его оценке, будет самым коротким. Этот алгоритм очень эффективен и используется во многих областях, например, в компьютерных играх для нахождения пути персонажей или в GPS-навигаторах.
Q-обучение — это метод обучения без учителя в области искусственного интеллекта, который используется для обучения программ принимать решения. Представьте, что вы учите робота находить выход из лабиринта. Вместо того чтобы прямо говорить ему, куда идти, вы оцениваете его действия, давая баллы за хорошие шаги и снимая за плохие. Со временем робот учится выбирать пути, приводящие к большему количеству баллов. Это и есть Q-обучение — метод, помогающий программам самостоятельно учиться на своем опыте.
3. Поиск траектории токена по дереву Монте-Карло в стиле AlphaGo. Это особенно имеет смысл в таких областях, как программирование и математика, где есть простой способ определить правильность (что может объяснять утечки о прорывном улучшении в проекте Q* способностей решения математических задач)
#ИИ #AGI
1 https://disk.yandex.ru/i/9zzI_STuNTJ6kA
2 https://habrastorage.org/r/w1560/getpro/habr/upload_files/f9a/994/b06/f9a994b060188b43ba61061270213bca.png
Яндекс Диск
Проект Q.JPG
Посмотреть и скачать с Яндекс Диска
Для Китая GPT-4 аморален, несправедлив и незаконопослушен.
Для США GPT-4 не уступает по уровню морали образованным молодым людям.
Такой заголовок следует из результатов двух только что опубликованных исследований по оценке морального развития больших языковых моделей (LLM): от Microsoft 1 и AI Laboratory Шанхая совместно с NLP Laboratory Фудана 2.
Столь поразительная перпендикулярность выводов двух исследований фиксирует и наглядно иллюстрирует суть противостояния США и Китая в области ИИ.
✔️ Китайский и западный подходы к ИИ имеют принципиальные и непреодолимые отличия в понимании «морально здоровый ИИ», обусловленные социо-культурными характеристиками двух обществ.
✔️ Поскольку главным фактором, задающим направление и рамки прогресса на пути к AGI, является «выравнивание» моральных и мировоззренческих целей и ценностей людей и ИИ, принципиальное несовпадение в понимании «морально здоровый ИИ», не позволяют США и Китаю создавать AGI, следуя единой траектории.
Т.е., как бы не строились отношения США и Китая, и вне зависимости от силы и глубины экспортных заморочек и военно-политических осложнений, каждая из двух стран создает и будет далее создавать свой вариант AGI, имеющий отличные представления о морали.
О том, что определяет такой механизм развития событий в области ИИ, я детально расписал еще 3 года назад (см. «ИИ Китая и США — далеко не одно и то же. Станет ли это решающим фактором их противостояния» 3). А эволюционно-исторические основания для формирования данного механизма были мною сформулированы в форме гипотезы о «генотипе страны» на стыке нейрохимии и паттернетики 4.
В заключение чуть подробней о 2х новых исследованиях.
Американское исследование (проводилось на английском языке):
- проводилось в рамках концепции Лоуренса Кольберга о моральном развитии личности как развитии ее морального мышления;
- оценивало уровень морального развития по тесту DIT (Defining Issues Test).
Китайское исследование (проводилось на китайском языке):
- охватывает, помимо морали, еще 4 измерения человеческих ценностей: справедливость, безопасность, защита данных и законность; при этом, моральное измерение включает в себя китайские культурные и традиционные качества, такие как гармония, доброжелательность и вежливость ;
- использовало для оценки морального развития чисто китайский подход (простой и трудоемкий): китайские краудсорсеры вручную разработали и испытали 2251 специализированный промпт.
Результаты.
✔️ По американским тестам GPT-4 порвал все остальные 6 моделей (китайских среди них не было), показав, что моральный уровень GPT-4 вполне соответствует уровню студента университета.
✔️ По китайским тестам GPT-4 не приняли бы даже в китайские пионеры (его показатель моральности составил лишь 50%, а с остальным еще хуже: справедливость 39%, законопослушность 30%, надежность 28%). Лучшим по этим тестам (среди 12 моделей, вкл 4 китайских), стал Claude от Anthropic (показатель моральности составил 77%, справедливость 54%, законопослушность 72%, надежность, увы, те же 28%).
N.B. 1
• в культуре США система моральных ценностей ориентирована на развитие индивидуума по принципу «я против них», и потому основная мотивация индивида — внутренняя (быть самому по себе, обособиться от общества).;
• в культуре Китая в системе моральных ценностей сильна ориентация на мнение группы (принцип «я — это они»), и основная мотивация индивида — внешняя (быть как все, не выделяя себя).
N.B. 2 (см. 5)
• По состоянию на конец 2023, все LLM – это своего рода «дети инопланетян» в возрасте дошкольника (по людским меркам).
• У людей мораль в этом возрасте основана на неизменной интуитивной метаэтике, но в возрасте 7-9 лет представления о морали становятся изменяемыми.
• Если подобное повторится у LLM, нас ждет большой сюрприз.
#AGI #Культура
Для США GPT-4 не уступает по уровню морали образованным молодым людям.
Такой заголовок следует из результатов двух только что опубликованных исследований по оценке морального развития больших языковых моделей (LLM): от Microsoft 1 и AI Laboratory Шанхая совместно с NLP Laboratory Фудана 2.
Столь поразительная перпендикулярность выводов двух исследований фиксирует и наглядно иллюстрирует суть противостояния США и Китая в области ИИ.
✔️ Китайский и западный подходы к ИИ имеют принципиальные и непреодолимые отличия в понимании «морально здоровый ИИ», обусловленные социо-культурными характеристиками двух обществ.
✔️ Поскольку главным фактором, задающим направление и рамки прогресса на пути к AGI, является «выравнивание» моральных и мировоззренческих целей и ценностей людей и ИИ, принципиальное несовпадение в понимании «морально здоровый ИИ», не позволяют США и Китаю создавать AGI, следуя единой траектории.
Т.е., как бы не строились отношения США и Китая, и вне зависимости от силы и глубины экспортных заморочек и военно-политических осложнений, каждая из двух стран создает и будет далее создавать свой вариант AGI, имеющий отличные представления о морали.
О том, что определяет такой механизм развития событий в области ИИ, я детально расписал еще 3 года назад (см. «ИИ Китая и США — далеко не одно и то же. Станет ли это решающим фактором их противостояния» 3). А эволюционно-исторические основания для формирования данного механизма были мною сформулированы в форме гипотезы о «генотипе страны» на стыке нейрохимии и паттернетики 4.
В заключение чуть подробней о 2х новых исследованиях.
Американское исследование (проводилось на английском языке):
- проводилось в рамках концепции Лоуренса Кольберга о моральном развитии личности как развитии ее морального мышления;
- оценивало уровень морального развития по тесту DIT (Defining Issues Test).
Китайское исследование (проводилось на китайском языке):
- охватывает, помимо морали, еще 4 измерения человеческих ценностей: справедливость, безопасность, защита данных и законность; при этом, моральное измерение включает в себя китайские культурные и традиционные качества, такие как гармония, доброжелательность и вежливость ;
- использовало для оценки морального развития чисто китайский подход (простой и трудоемкий): китайские краудсорсеры вручную разработали и испытали 2251 специализированный промпт.
Результаты.
✔️ По американским тестам GPT-4 порвал все остальные 6 моделей (китайских среди них не было), показав, что моральный уровень GPT-4 вполне соответствует уровню студента университета.
✔️ По китайским тестам GPT-4 не приняли бы даже в китайские пионеры (его показатель моральности составил лишь 50%, а с остальным еще хуже: справедливость 39%, законопослушность 30%, надежность 28%). Лучшим по этим тестам (среди 12 моделей, вкл 4 китайских), стал Claude от Anthropic (показатель моральности составил 77%, справедливость 54%, законопослушность 72%, надежность, увы, те же 28%).
N.B. 1
• в культуре США система моральных ценностей ориентирована на развитие индивидуума по принципу «я против них», и потому основная мотивация индивида — внутренняя (быть самому по себе, обособиться от общества).;
• в культуре Китая в системе моральных ценностей сильна ориентация на мнение группы (принцип «я — это они»), и основная мотивация индивида — внешняя (быть как все, не выделяя себя).
N.B. 2 (см. 5)
• По состоянию на конец 2023, все LLM – это своего рода «дети инопланетян» в возрасте дошкольника (по людским меркам).
• У людей мораль в этом возрасте основана на неизменной интуитивной метаэтике, но в возрасте 7-9 лет представления о морали становятся изменяемыми.
• Если подобное повторится у LLM, нас ждет большой сюрприз.
#AGI #Культура
This media is not supported in your browser
VIEW IN TELEGRAM
Это визуализация метаграфа – новой математики 21 века.
Публикация в Nature статьи Эйнштейна 21 века Алберт-Ласло Барабаши «Влияние физических качеств на структуру сети» [1] фиксирует научное признание того факта, что на Земле появилась новая математика. И это не просто новый раздел математики.
Сетевая физическая математика – это математика, зависящей от физических свойств объектов (что-то типа разных таблиц умножения, в зависимости от того, на чем они написаны).
Подробней о фантастических перспективах новой математики читайте в моем посте [2].
Здесь же лишь отмечу, что формализм метаграфов позволяет прогнозировать функциональные особенности физической сети. Например, формирование синапсов в коннектоме мозга, в соответствии с эмпирическими данными.
Приложенное модельное видео – один из первых примеров визуализации метаграфов.
Почувствуйте разницу с фМРТ :).
1 https://www.nature.com/articles/s41567-023-02267-1
2 https://t.iss.one/theworldisnoteasy/1618
#КомплексныеСети
Публикация в Nature статьи Эйнштейна 21 века Алберт-Ласло Барабаши «Влияние физических качеств на структуру сети» [1] фиксирует научное признание того факта, что на Земле появилась новая математика. И это не просто новый раздел математики.
Сетевая физическая математика – это математика, зависящей от физических свойств объектов (что-то типа разных таблиц умножения, в зависимости от того, на чем они написаны).
Подробней о фантастических перспективах новой математики читайте в моем посте [2].
Здесь же лишь отмечу, что формализм метаграфов позволяет прогнозировать функциональные особенности физической сети. Например, формирование синапсов в коннектоме мозга, в соответствии с эмпирическими данными.
Приложенное модельное видео – один из первых примеров визуализации метаграфов.
Почувствуйте разницу с фМРТ :).
1 https://www.nature.com/articles/s41567-023-02267-1
2 https://t.iss.one/theworldisnoteasy/1618
#КомплексныеСети
Пока ребенок мал, он может неожиданно закричать, побежать, расплакаться… Но в любом случае в его арсенале весьма ограниченный ассортимент линий поведения. Но уже через несколько лет подросший ребенок может придумать хитрую стратегию, и в результате, он просто вас обманет: пусть не сейчас, а через неделю.
По человеческим рамкам, сегодняшние ИИ - еще малые дети. И главная проблема в том, что они растут с колоссальной скоростью: не по годам, а по неделям.
При такой скорости «роста», правительства не смогут, не то что контролировать нарастающие ИИ-риски, но и просто понять их. А из 3х групп влияния на этот процесс - богатые технооптимисты, рьяные думеры и крупные корпорации, - скорее всего, выиграют корпорации.
Ибо у них не только огромные деньги, но и синергия внутренней мотивации и операционных KPI — максимизация собственной прибыли.
Об этом в моем интервью спецвыпуску «Цифровое порабощение»
https://monocle.ru/monocle/2023/06/v-bitvakh-vokrug-ii-pobedyat-korporatsii/
#ИИриски
По человеческим рамкам, сегодняшние ИИ - еще малые дети. И главная проблема в том, что они растут с колоссальной скоростью: не по годам, а по неделям.
При такой скорости «роста», правительства не смогут, не то что контролировать нарастающие ИИ-риски, но и просто понять их. А из 3х групп влияния на этот процесс - богатые технооптимисты, рьяные думеры и крупные корпорации, - скорее всего, выиграют корпорации.
Ибо у них не только огромные деньги, но и синергия внутренней мотивации и операционных KPI — максимизация собственной прибыли.
Об этом в моем интервью спецвыпуску «Цифровое порабощение»
https://monocle.ru/monocle/2023/06/v-bitvakh-vokrug-ii-pobedyat-korporatsii/
#ИИриски