Малоизвестное интересное
66.9K subscribers
121 photos
1 video
11 files
1.83K links
Авторский взгляд через призму новейших исследований на наше понимание реальности, человеческой сущности и того, как ИИ меняет их.




Рекламы, ВП и т.п. в канале нет.
Пишите на @karelovs
Download Telegram
​​Мы на шаг ближе к открытию ОТО ноосферы.
Модели генерации изображений работают усилителями предубеждений.

Три года назад я рассказывал об интереснейшем американо-британском исследовании, обнаружившем искривление пространства субъективной реальности. Его источник — социальные сети. А его суть – индуцируемая алгоритмами деформация (изменение кривизны) субъективного инфопространства миллионов людей. И «кривизна» здесь не гипербола, а измеряемый параметр, характеризующий искривление инфопотоков.

Только опубликованный препринт интереснейшего американо-итальянского исследования делает следующий шаг, приближающий нас к общей теории кривизны субъективного инфопространства цифровых медиа. Т.е. по сути, - к своего рода, общей теории относительности ноосферы (ибо по ходу тотальной оцифровки реальности цифровые медиа становятся ключевым элементом ноосферы).

Авторы исследовали предубеждения, которые проявляются в моделях генерации изображений типа Stable Diffusion и DALL-E.
1-й результат исследования – не удивителен и лежал на поверхности: генераторы изображений увековечивают предубеждения, прорастая навечно в тысячах приложений и становясь частью новой цифровой реальности.
2-й результат – не то чтобы совсем сюрприз, но уж больно тревожен: генераторы изображений усиливают предубеждения (например, они имеют тенденцию отображать более острые предубеждения, чем базовые наборы данных, используемые для обучения моделей).

Механизм искривления генераторами изображений субъективного инфопространства миллионов людей прост и непреодолим своей положительной обратной связью:
1. человеческие предубеждения, всегда содержащиеся в обучающих наборах данных, порождают предубеждения моделей генерации изображений (чем больше предубеждений в данных, тем больше предубеждений у моделей);
2. предубеждения моделей обостряются их алгоритмами;
3. обостренные предубеждения моделей влияют на миллионы людей, увеличивая их предубеждения;
4. переход к п. 1

Комментируя эти результаты, Джек Кларк написал, что это не столько техническая проблема, сколько социотехническая. И это действительно так.
Поскольку проблема технически неустранима, начнутся политические баталии о том, какие предубеждения «правильные» для различных моделей, а какие нет.
И все это кончится полной идеологизацией ноосферы: подходов, определяющих «правильные» предубеждения, и моделей на их основе, будет столько же, сколько идеологий на планете.

Закончу той же фразой, что и 1-й пост про ОТО ноосферы (теперь это стало еще более очевидно).
Антиутопия будущего – не Черное зеркало, а кривое.

#МоделиГенерацииИзображений