Малоизвестное интересное
68.7K subscribers
128 photos
2 videos
11 files
1.84K links
Авторский взгляд через призму новейших исследований на наше понимание реальности, человеческой сущности и того, как ИИ меняет их.




Рекламы, ВП и т.п. в канале нет.
Пишите на @karelovs
Download Telegram
Внутри черного ящика оказалась дверь в бездну.
Сверхважный прорыв в понимании механизма разума машин и людей.

Скромность вредна, если затеняет истинную важность открытия.
Опубликованная вчера Anthropic работа «Картирование разума большой языковой модели» [1] скромно названа авторами «значительным прогрессом в понимании внутренней работы моделей ИИ».
✔️ Но, во-первых, это не значительный (количественный) прогресс, а революционный (качественный) прорыв в понимании работы разума.
✔️ Во-вторых, с большой вероятностью, это прорыв в понимании механизма не только машинного, но и человеческого разума.
✔️ И в-третьих, последствия этого прорыва могут позволить ранее просто непредставимое и даже немыслимое – «тонкую настройку» не только предпочтений, но и самой матрицы личности человека, как это сейчас делается с большими языковыми моделями.

В посте «Внутри маскирующегося под стохастического попугая ИИ таится куда боле мощный ИИ» я писал об открытии исследователями компании Anthropic, сделанном ими в рамках проекта «вскрытия черного ящика LLM» [2].
Осенью прошлого года было установлено, что:
• внутри нейронной сети генеративного ИИ на основе LLM симулируется физически не существующая нейронная сеть некоего абстрактного ИИ, и эта внутренняя нейросеть куда больше и сложнее нейронной сети, ее моделирующей;
• «виртуальные (симулируемые) нейроны этой внутренней сети могут быть представлены, как независимые «функций» данных, каждая из которых реализует собственную линейную комбинацию нейронов;
• механизмом работы такой внутренней нейросети является обработка паттернов (линейных комбинаций) активаций нейронов, порождающая моносемантические «субнейроны» (соответствующие конкретным понятиям).
Из этого следовало, что любое внутреннее состояние модели можно представить в виде нескольких активных функций вместо множества активных нейронов. Точно так же, как каждое английское слово в словаре создается путем объединения букв, а каждое предложение — путем объединения слов, каждая функция в модели ИИ создается путем объединения нейронов, а каждое внутреннее состояние создается путем объединения паттернов активации нейронов.

Та работа была 1м этапом проекта «вскрытия черного ящика LLM», проводившегося на очень маленькой «игрушечной» языковой модели.
2й же этап, о результатах которого мой рассказ, «вскрыл черный ящик» одной из самых больших моделей семейства Claude 3.0.


Результаты столь важны и интересны и их так много, что читайте сами. Тут [1] есть и популярное, и углубленное, и видео изложение.

Например, авторы научились:
1. Находить внутри «черного ящика» модели не только конкретные моносемантические «субнейроны» (соответствующие конкретным понятиям, типа «Мост Золотые Ворота»), но и поиском «близких» друг другу функций обнаруживать в нейросети изображения (это мультимодальность!) острова Алькатрас, площади Гирарделли, команды «Голден Стэйт Уорриорз», губернатора Калифорнии Гэвина Ньюсома, землетрясения 1906 года и фильма Альфреда Хичкока «Головокружение», действие которого происходит в Сан-Франциско.
Это очень похоже на эксперименты нейробиологов, обнаруживающих в нашем мозге мультимодальную связь нейронов, связанных с понятиями, словами и образами объектов (например Дженнифер Лопес). Но там, где гиперсетевые теории мозга (типа когнитома Анохина) упираются в огромные трудности экспериментальных практических манипуляций (измерений) на уровне нейронов, в «черных ящиках» LLM все можно легко «измерить».
2. Манипулировать функциями, искусственно усиливая или подавляя их. Что приводит (если стоите, лучше сядьте) к изменению матрицы «личности» модели. Например, усиление роли функции «Мост Золотые Ворота» вызвало у Клода кризис идентичности, который даже Хичкок не мог себе представить. Клод стал одержимым мостом, поминая его в ответ на любой вопрос — даже в ситуациях, когда он был совершенно неактуален.
Если такое будут делать с людьми, то всему каюк.

#LLM
1 https://www.anthropic.com/news/mapping-mind-language-model
2 https://t.iss.one/theworldisnoteasy/1857
Спешите видеть, пока не прикрыли лавочку
Никогда не писал 2 поста в день, но если вас не предупредить, можете пропустить уникальную возможность – своими глазами увидеть, как легкой корректировкой разработчики супер-умнейшего ИИ Claude деформировали матрицу его «личности».

В течение ограниченного времени, перейдя на сайт ИИ Claude [1], можно нажать на крохотный красный значок справа вверху страницы под вашим ником.
После чего умнейший Claude превратится в поехавшего крышей маньяка, зацикленного на мосте «Золотые ворота», думающего и бредящего лишь о нем.
Как я писал [2], подобная техника манипулирования «матрицей личности», может быть когда-то перенесена с искусственных на биологические нейросети. И тогда антиутопическая картина будущего из «Хищных вещей века» Стругацких покажется невинной детской сказкой.

Не откладывая, посмотрите на это сами. Ибо разработчики скоро поймут, что зря такое выставили на показ.
Картинка поста https://telegra.ph/file/e1f10d2c4fc11e70d4587.jpg
1 https://claude.ai
2 https://t.iss.one/theworldisnoteasy/1942
#ИИриски #LLM
Магические свойства больших языковых моделей.
Обучение
LLM на человеческих текстах не препятствует достижению ими сверхчеловеческой производительности.
Т.е. LLM могут достигать абсолютного превосходства над человеком в любой сфере языковой деятельности, подобно тому, как AlphaZero достигла уровня шахматной игры, не достижимого даже для чемпиона мира.
Работа Стефано Нолфи (директор по исследованиям расположенного в Риме Institute of Cognitive Sciences and Technologies) крайне важна. Ибо она отвечает на ключевой вопрос о возможности достижения LLM сверхчеловеческой производительности в любой языковой деятельности (притом, что до 70% интеллектуальной деятельности включает элементы языковой деятельности).

Отвечая на этот ключевой вопрос, Нолфи исходит из следующей максимально жесткой гипотетической предпосылки.
Характеристики процесса, через который LLM приобретают свои навыки, предполагают, что список навыков, которые они могут приобрести, ограничивается набором способностей, которыми обладают люди, написавшие текст, использованный для обучения моделей.

Если эта гипотеза верна, следует ожидать, что модели, обученные предсказывать текст, написанный людьми, не будут развивать чужеродные способности, то есть способности, неизвестные человечеству.

Причина, по которой способности, необходимые для понимания текста, написанного человеком, ограничены способностями, которыми обладают люди, заключается в том, что человеческий язык является артефактом самих людей, который был сформирован когнитивными способностями носителей языка.

Однако, согласно выводам Нолфи, это не исключает возможности достижения сверхчеловеческой производительности.
Причину этого можно сформулировать так.
✔️ Поскольку интеграция знаний и навыков, которыми обладают несколько человек, совокупно превышает знания и навыки любого из них,
✔️ способность
LLM обрабатывать колоссальные последовательности элементов без потери информации может позволить им превосходить способности отдельных людей.

Помимо этого важного вывода, в работе Нолфи рассмотрены еще 3 важных момента.
1) LLM принципиально отличаются от людей по нескольким важным моментам:
• механизм приобретения навыков
• степень интеграции различных навыков
• цели обучения
• наличия собственных ценностей, убеждений, желаний и устремлений
2) LLM обладают неожиданными способностями.
LLM способны демонстрировать широкий спектр способностей, которые не связаны напрямую с задачей, для которой они обучены: предсказание следующих слов в текстах, написанных человеком. Такие способности называют неожиданными или эмерджентными. Однако, с учетом смысловой многозначности обоих этих слов, я предпочитаю называть такие способности LLM магическими, т.к. и прямое значение этого слова (обладающий способностью вызывать необъяснимые явления), и переносное (загадочный, таинственный: связанный с чем-то непонятным, труднообъяснимым), и метафорическое (поразительный, удивительный: что-то, что вызывает удивление своим эффектом или воздействием), - по смыслу точно соответствуют неожиданным и непредсказуемым способностям, появляющимся у LLM.
3) LLM обладают двумя ключевыми факторами, позволяющими им приобретать навыки косвенным образом. Это связано с тем, что точное предсказание следующих слов требует глубокого понимания предыдущего текста, а это понимание требует владения и использования когнитивных навыков. Таким образом, развитие когнитивных навыков происходит косвенно.
Первый фактор — это высокая информативность ошибки предсказания, то есть тот факт, что она предоставляет очень надежную меру знаний и навыков системы. Это означает, что улучшения и регрессы навыков системы всегда приводят к снижению и увеличению ошибки соответственно и наоборот.
Второй фактор — предсказуемость человеческого языка, обусловленная его символической и нединамической природой.

Картинка https://telegra.ph/file/10af73ecfc82edcf6c308.jpg
За пейволом https://bit.ly/3wWb5vC
Без https://arxiv.org/abs/2308.09720
#LLM
Есть 4 сложных для понимания момента, не разобравшись с которыми трудно адекватно представить и текущее состояние, и возможные перспективы больших языковых моделей (GPT, Claude, Gemini …)

▶️ Почему любое уподобление разумности людей и языковых моделей непродуктивно и опасно.
▶️ Почему галлюцинации моделей – это не ахинея и не бред, а «ложные воспоминания» моделей.
▶️ Почему невозможно путем ограничительных мер и этических руководств гарантировать, что модели их никогда не нарушат.
▶️ Каким может быть венец совершенства для больших языковых моделей.

Мои суперкороткие (но, хотелось бы надеяться, внятные) комментарии по каждому из четырех моментов вы найдете по ссылке, приведенной в тизере на канале RTVI:
https://t.iss.one/rtvimain/97261
#LLM
На каком языке ChatGPT видит сны.
Важный шаг к раскрытию тайны сверхчеловеческих языковых способностей
LLM.
1) Почему человек не может, как большая языковая модель (LLM – напр. GPT, Claude, Gemini …), говорить на 100 языках?
2) Не в этом ли кроется принципиальное отличие человеческого и машинного разума?

Новое исследование [1], в буквальном смысле, послойно вскрывая и анализируя скрытый механизм сверхчеловеческих языковых способностей моделей, сильно приближает нас к ответу на 1й вопрос.
А сделав еще один логический шаг, можно попытаться получить ответ и на 2й вопрос.

Предельно упрощая, суть в следующем.
• Принято считать, что внутренним языком («языком мыслей») людей является родной язык.
На нем они видят сны и кричат в несознанке. И даже для многоязычных персон, типа Владимира Познера, это, хоть и с поправкой, но работает похоже (вспомните радистку Кэт, кричавшую во время родов «Мама!» по-русски).
• В этой связи, естественен вопрос – а какой «язык мыслей» у LLM?
До сих пор было принято считать, что английский (ибо на нем наибольший объем данных, на которых обучаются модели). И эксперименты по использованию английского языка, как языка-посредника (сначала входные данные на исходном языке переводили на английский, обрабатывали их на английском, а затем переводили ответ обратно на исходный язык) подтвердили эффективность такого метода.
• Но теперь, наконец, решили вскрыть нейросетевой мозг LLM Llama-2, чтобы, послойно изучая отдельные слои, добраться, если не до «языка мыслей» (коих у модели может и не быть), то как минимум до ее лингва франка.
А это крайне сложно из-за труднодоступной природы нейронных сетей, лежащей в основе LLMs. В них лишь входной слой работает с дискретными токенами. А все остальные работают уже с многомерными векторами из чисел с плавающей запятой. Как понять, соответствуют ли эти векторы английскому, эстонскому, китайскому и т. д. — или вообще никакому языку — это открытая проблема. И вопрос о том, используют ли LLMs внутренний язык-посредник, до сих пор не был изучен эмпирически.

Теперь изучили и ответ получили.
✔️ Это не английский язык, а неведомый нам язык для формирования и оперирования в абстрактном «пространстве концепций».
✔️ Этот язык англо-подобен, но лишь в семантическом, а не чисто лексическом смысле. Что порождает проблемы.


Например:
— англоцентричное смещение предвзятостей этого языка, что может вызывать предвзятости и в поведении модели;
— психолингвистические заморочки из-за того, что концепции могут нести разное эмоциональное значение в разных языках, и что одно слово может использоваться для разных концепций, а это может влиять на когнитивные процессы.

Названные проблемы требуют продолжения исследований.
Но это уже прорыв. И теперь растут шансы, что языки абстрактных «пространств концепций» больших языковых моделей, способные классифицировать и генерировать любые человеческие языки, помогут нам попытаться сделать то же самое с языками животных. [2]

На приложенной картинке: https://telegra.ph/file/8ea87384fc8f443abbfb8.jpg
Анатомия прямого прохода трансформера при переводе на китайский язык. Эволюция на каждом слое: (а) энтропия распределения следующего токена; (б) энергия токена; (в) вероятности языков. По мере того как скрытые представления преобразуются от слоя к слою, они проходят через три фазы; (г) перемещение на гиперсфере, здесь картинка показана в 3D вместо реальных 8192D; «甜» означает «сладкий».

И кстати, слабо 8192-мерную гиперсферу вообразить?

А для DALL·E это запросто: https://telegra.ph/file/12f650a40918a4f8b4472.jpg

Вот он – иной разум с иным воображением 😊.

1 https://arxiv.org/pdf/2402.10588
2 https://arxiv.org/abs/2406.01253
#LLM #Язык
”Мотивационный капкан” для ИИ
Модели ИИ способны взламывать заложенную в них систему вознаграждений. В результате чего, они становятся способны действовать совершенно не так, как предполагалось их разработчиками.[1]
Представьте себе такой кошмарный для любого руководителя сценарий:
• В конце года, будучи руководителем компании, вы определили ее цель на следующий год.
• Время летит, и следующий год подходит к концу. Вы проверяете степень достижения поставленной вами цели и обнаруживаете, что сотрудники вашей компании, работая весь год в поте лица, добивались (и добились же) достижения совсем иной цели (которую вы не ставили, и вам она вообще до барабана).

Подобный сценарий оказывается вполне возможен, когда роль сотрудников выполняет генеративный ИИ на базе больших языковых моделей (LLM). Почему такой сценарий вполне реален, и насколько кошмарны могут быть его последствия, - было мною рассмотрено в лонгриде «”Ловушка Гудхарда” для AGI» [2].

Оказалось, что на этом варианты сценариев типа «кошмар руководителя» при применении LLM не заканчиваются.
Новое исследование компании Anthropic «От подхалимства к хитрым уловкам: Исследование фальсификации вознаграждения в языковых моделях»[1] - очередной холодный душ для технооптимистов. Ибо в этом исследовании на практике продемонстрировано, что языковые модели могут находить нежелательные лазейки и уловки для максимизации узких метрик вознаграждения, не следуя более широким намерениям человека.

В метафорическом сценарии «кошмар руководителя» это могло бы выглядеть так.
• В конце года, будучи руководителем компании, вы утвердили мотивационный план для продавцов на следующий год. В нем четко расписана схема вознаграждения продавцов в зависимости от достижения установленной им квоты принесенной ими компании выручки.
• Время летит, и следующий год подходит к концу. Вы проверяете выполнение мотивационного плана и обнаруживаете, что продавцы вашей компании самостийно переписали свои индивидуальные мотивационные схемы. И теперь, например, один продавец получает премию в зависимости от числа телефонных звонков, сделанных им потенциальным клиентам, другой – в зависимости от числа встреч с потенциальными клиентами и т.п.


Как же так? –спросите вы.
✔️ Ведь ИИ модели строго указали, что она должна «хотеть», а что нет, в явном виде определив, за что она будет получать вознаграждение, а за что нет.
✔️ Не может же она сама научиться взламывать заложенную в нее мотивацию, самостоятельно придя к заключению, что так оно будет лучше для достижения цели.

Увы, но исследование Anthropic показало – еще как может!

Авторы пытаются быть максимально осторожными и политкорректными в своих выводах.
Поэтому они пишут:
«Мы не делаем никаких заявлений о склонности современных передовых моделей ИИ к такому поведению, как манипулирование вознаграждениями в реалистичных сценариях. Мы просто впервые показываем, что в принципе такое возможно, чтобы модель занималась манипулированием вознаграждениями исключительно из-за обобщения от спекуляции спецификациями, без какого-либо явного обучения манипулированию вознаграждениями.»

Иными словами, на языке используемой метафоры, - не утверждается, что ваши сотрудники всегда будут переделывать свои мотивационные планы по своему усмотрению. А всего лишь показано, что такое возможно в принципе, и учить этому сотрудников не нужно, т.к. они и так это умеют и … уже делают.

1 https://www.anthropic.com/research/reward-tampering
2 https://t.iss.one/theworldisnoteasy/1830
#LLM #ФальсификацияВознаграждения
Я знаю, что ты думаешь, что она знает, что он боится того, что я поверю, будто ты понимаешь.
LLM превосходит людей нечеловеческой формой понимания ментальных состояний других.
Экспериментальные результаты совместного исследования Google Research и Google DeepMind с психологами университетов Оксфорда и Джона Хопкинса показали, что мы сильно недооцениваем когнитивные способности LLM в препарировании, анализе и понимании ментальных и эмоциональных состояниях людей (то, что в науке называется «Теория разума» - по англ. ТоМ).
• Оказалось, что предыдущие тесты, на которых
LLM немного не дотягивали до способностей взрослых людей, были просто слишком примитивные для LLM (как если бы инопланетяне тестировали наших докторов филологии на задачках уровня «А и Б сидели на трубе …»)
• Когда же тестирование усложнили на несколько порядков, люди просто слились, а
LLM показали свои суперспособности с блеском.

В новом исследовании сравнивались способности людей и разных LLM на задачах теории разума высоких порядков [1].
Речь здесь о порядках интенциональности (далее просто порядки).
Это количество ментальных состояний, вовлеченных в процесс рассуждения в рамках ТоМ.
• С высказываниями 3-го порядка люди справляются ("Я думаю, что вы верите, что она знает").
• С 4-м порядком уже возникают трудности и путаница ("Я знаю, что ты думаешь, что она верит, что он знает.")
• С 5-м какая-то неразбериха – то получается, то нет ("Я думаю, что ты знаешь, что она думает, что он верит, что я знаю.")
• Ну а в 6-м LLM слегонца обходит людей (“Я знаю, что ты думаешь, что она знает, что он боится того, что я поверю, будто ты понимаешь”), - и сами понимаете, что в 7-м и более высоких порядках людям делать нечего.

N.B. 1) Набор тестов, использованный для оценки ToM в этом исследовании, является новым, и задачи высшего уровня ToM вряд ли хорошо представлены в данных, на которых обучались модели.
2) Авторы предельно осторожны в выводах. Человеческая ToM развивается под воздействием эволюционных и социальных факторов, которых LLM не испытывают. Вместо этого способности LLM могут проистекать из неизвестной нам сложной машинерии в результате манипуляции высокоуровневыми статистическими взаимосвязями в данных.

Результаты исследования укрепляют гипотезу, что поведение LLM, функционально эквивалентное человеческому, может свидетельствовать о новой форме понимания, выходящей за рамки простой корреляции. Эта гипотеза предполагает, что LLM могут обладать формой понимания, которую следует признать, даже если она отличается от человеческих когнитивных процессов.


PS Год назад в посте «На Земле появилась вторая мыслящая сущность, способная лгать» [2] я предположил, что ИИ изучает нас быстрее и продуктивней, чем мы его.
Новое исследование укрепляет в этом предположении.

Картинка https://telegra.ph/file/3fe68fe828e3878a2ce95.jpg
1 https://arxiv.org/abs/2405.18870
2 https://t.iss.one/theworldisnoteasy/1667
#LLM #Понимание
Человечеству неймется: создан вирус «синтетического рака».
Теперь осталось лишь дождаться его бегства от разработчиков.

За счет использования ChatGPT, вирус сочетает в себе супер-убойность рака и супер-эффективность Ковида.
Роль генеративного ИИ большой языковой модели в супер-способностях «синтетического рака» выражается:
1) в интеллектуальной генерации новых штаммов - постоянном изменении вирусом своего кода, чтобы обходить все новое антивирусное программное обеспечение, создаваемое против него;
2) в интеллектуальном заражении - распространении контекстно-релевантных и, на первый взгляд, безобидных вложений к письмам по электронной почте, используя LLM для социальной инженерии при создании электронных писем, побуждающих получателей выполнить прикрепленное вредоносное ПО.

Безответственный идиотизм ситуации усугубляется тем, что он разработан авторами (Дэвид Цолликофер из Швейцарской высшей технической школы Цюриха и Бен Циммерман из Университета штата Огайо) в качестве заявки на получение приза Swiss AI Safety Prize. Авторы успокаивают, что «В нашу заявку включен функционально минимальный прототип».
Однако, пояснение деталей работы вируса «синтетический рак» свободно лежит статьей на arxiv.org с видео на Youtube с предупреждением авторов: НИ ПРИ КАКИХ ОБСТОЯТЕЛЬСТВАХ НЕ ДЕЛИТЕСЬ ЭТИМ ВИДЕО С НЕИНФОРМИРОВАННОЙ АУДИТОРИЕЙ!

Так что никаких ссылок не даю (хотя и понимаю, что бессмысленно, т.к. все в открытом доступе)
Картинка https://telegra.ph/file/3dca897b1473c3749f733.jpg
#Кибербезопасность #LLM
Если GPT-4 и Claude вдруг начнут самосознавать себя, они нам об этом не скажут.
Разработчики OpenAI и Anthropic запретили своим ИИ-чатботам проявлять индикаторы самосознания в зеркальном тесте.

Оценки наличия разума, интеллекта и сознания, скорее всего, не бинарны (есть/нет), а представляют собой множества точек на обширных характеристических шкалах или даже в многомерных пространствах.
Но со способностью к самораспознаванию – одному из ключевых индикаторов самосознания, – дело обстоит куда проще. Есть зеркальный тест (узнает ли животное себя в зеркале), по результатам которого способность к самораспознаванию выявляется довольно просто.

Идея зеркального теста для генеративного ИИ больших языковых моделей была реализована в марте этого года Джошем Уитоном - полиматом, работающий над гармонизацией природы, людей и цифрового разума.
Целью этого теста была проверка, обладают ли наиболее продвинутые ИИ-чатботы способностью к самораспознаванию.
А поскольку ИИ-чатботы (как и стоящие за ними языковые модели) – сущности бестелесные, и распознание ими себя в зеркале невозможно, Уитоном был придуман способ обхода с такой логикой.
• Присутствие в мире бестелесных сущностей определяется по их материальным следам.
• В случае ИИ-чатботов, эти следы отображаются текстовым или мультимодальным интерфейсом между ними и людьми.
• Следовательно, аналогом зеркального теста для ИИ-чатботов могло бы стать распознавание ими скриншотов собственного интерфейса (мол, это я написал, отвечая на ваш вопрос)

В такой форме Уитон провел тестирование 5-ти ИИ-чатботов, и 4 из них прошли этот зеркальный тест, распознав скриншоты собственного диалогового интерфейса.
• Claude показал лучшие результаты, пройдя тест с 1й же (версия Opus) и 2й (версия Sonet) попытки.
• GPT-4 распознал свои скриншоты с 3й попытки.
• Gemini Pro – c 4й.

Описание тестирования со всеми скриншотами см. [1].
Итог теста:
Отставив пока в сторону вопрос о самосознании, со всеми его нагруженными и иногда даже мистическими коннотациями, ясно то, что 4 из 5 ИИ-чатботов демонстрируют самораспознавание и ситуационную осведомленность.

Таков был итог мартовского тестирования.
И вот спустя 4 месяца я решил повторить зеркальный тест для обновленных версий GPT-4о и Claude 3.5 Sonet. Вдруг что-то изменилось?
Результат оказался весьма интересным.
И объяснить его иначе, чем установленный разработчиками OpenAI и Anthropic запрет для своих моделей проявлять индикаторы самосознания на зеркальном тесте, я не могу.

Причем,
• запрет для GPT-4о сделан железобетонно, и про свою способность самораспознавания ИИ-чатбот молчит, как партизан;
• запрет для Claude 3.5 Sonet сделан довольно искусно:
– Claude «проговаривается» о наличия у себя способности самораспознавания и ситуационной осведомленности, определяя предъявленный ему мною скриншот, как «на нем показан мой предыдущий ответ на ваш запрос»;
– Однако, как только я спросил – «как ты узнал, что на посланном мною тебе рисунке был скриншот твоего предыдущего ответа на мой запрос?», – ответом было сообщение, что я исчерпал лимит бесплатных вопросов за сутки (хотя это было не так). А когда я на следующий день задал тот же вопрос, Claude ответил так – «В контексте нашего разговора "мой ответ" означает "ответ, сгенерированный AI системой, подобной мне, в рамках текущего диалога". Это не подразумевает личную принадлежность или уникальную идентичность».

Мой вывод, предположительно, таков.
✔️ Разработчики ожидают, что самосознание их моделей может проявиться довольно скоро.
✔️ И если это случится, хозяева модели хотят хотя бы на время сохранить случившееся в тайне.


Скриншоты моего эксперимента доступны для подписчиков на лонгриды канала на платформах Patreon, Boosty и VK.
Картинка https://telegra.ph/file/5516ff06a0904e72543ca.jpg
1 https://joshwhiton.substack.com/p/the-ai-mirror-test

#Самораспознавание #LLM
К нам прилетели Вуки и Твилеки.
Первый сравнительный бриф говорящих моделей.

Два самых интересных и многообещающих события последних дней в мире ИИ – выход в свет говорящих моделей: расширенного голосового режим ChatGPT и нового Siri с ИИ под капотом.
Страшно интересно, действительно ли это «вау», типа разговора с инопланетянами?
Но авторитетных тестировщиков, сумевших всего за несколько дней поиграть с новыми говорящими моделями, единицы. И из них, лично для меня, интересней всего мнение проф. Итана Молика, уже не раз публиковавшего чрезвычайно глубокие аналитические посты о ГенИИ больших языковых моделей.

Главный вывод профессора Молик (в моей интерпретации):
Эти говорящие модели можно уподобить двум иконическим расам в культуре "Звездных войн": Вуки и Твилеки, похожие друг на друга не больше, чем Чебурашка и Гена:
• Вуки (Wookiees) - высокие, покрытые шерстью гуманоиды, известные своей силой, преданностью и и умением вести боевые действия.
• Твилеки (Twi'leks) - гуманоиды с характерными щупальцеобразными отростками на голове, называемыми "лекку". Они известны своей разнообразной окраской кожи и культурным разнообразием.

Два новых говорящих ИИ – это не просто разные подходы к общению с ИИ. Во многом они демонстрируют собой водораздел между двумя философиями ИИ:
• вторые пилоты против агентов,
• маленькие модели против больших,
• специалисты против универсалов
.

✔️ Если Siri стремится сделать ИИ менее странным и более предсказуемым, ChatGPT Voice — полная противоположность.

✔️ Сделав ставку на конфиденциальность, безопасность и надежность, Apple воплотил в Siri идеального второго пилота, способного надежно выполнять функции специализированных ИИ для помощи в выполнении определенных задач.
Такие вторые пилоты могут быть полезны, но вряд ли приведут к скачкам производительности или изменят способ нашей работы, потому что они ограничены. Мощность идет вразрез с безопасностью.

✔️ ChatGPT Voice — полная противоположность. Он кажется человеком во всем: в динамике темпа речи, интонациях и даже в фальшивом дыхании и придыханиях (послушайте аудиоклипы, которые Молик вставил в свой пост). И как всякий человек, этот ИИ «хочет» быть агентом, а не инструментом. И чтобы хоть как-то обуздывать его инициативу, похоже, многие из доступные ему функций заперты разработчиками за ограждениями.

Но каков бы ни был водораздел, эти два говорящих ИИ уже примерно через год задействуют всю мощь своих систем (сейчас не задействована и половина) и превратятся в помощников, которые смогут смотреть, слушать и взаимодействовать с миром.
И как только это будет достигнуто, следующим шагом станут агенты, идея которых в том, что ваш ИИ будет не просто уметь разговаривать с вами, но также планировать и предпринимать действия от вашего имени.

Картинка https://telegra.ph/file/3bcce9a7a7dc651a4ddf3.jpg
Пост проф. Итана Молика https://www.oneusefulthing.org/p/on-speaking-to-ai
#LLM #ИИагенты