Data Analytics
108K subscribers
131 photos
2 files
802 links
Perfect channel to learn Data Analytics

Learn SQL, Python, Alteryx, Tableau, Power BI and many more

For Promotions: @coderfun @love_data
Download Telegram
โœ… Data Analytics Real-World Use Cases ๐ŸŒ๐Ÿ“Š

Data analytics turns raw data into actionable insights. Here's how it creates value across industries:

1๏ธโƒฃ Sales Marketing
Use Case: Customer Segmentation
โ€ข Analyze purchase history, demographics, and behavior
โ€ข Identify high-value vs low-value customers
โ€ข Personalize marketing campaigns
Tools: SQL, Excel, Python, Tableau

2๏ธโƒฃ Human Resources (HR Analytics)
Use Case: Employee Retention
โ€ข Track employee satisfaction, performance, exit trends
โ€ข Predict attrition risk
โ€ข Optimize hiring decisions
Tools: Excel, Power BI, Python (Pandas)

3๏ธโƒฃ E-commerce
Use Case: Product Recommendation Engine
โ€ข Use clickstream and purchase data
โ€ข Analyze buying patterns
โ€ข Improve cross-selling and upselling
Tools: Python (NumPy, Pandas), Machine Learning

4๏ธโƒฃ Finance Banking
Use Case: Fraud Detection
โ€ข Analyze unusual patterns in transactions
โ€ข Flag high-risk activity in real-time
โ€ข Reduce financial losses
Tools: SQL, Python, ML models

5๏ธโƒฃ Healthcare
Use Case: Predictive Patient Care
โ€ข Analyze patient history and lab results
โ€ข Identify early signs of disease
โ€ข Recommend preventive measures
Tools: Python, Jupyter, visualization libraries

6๏ธโƒฃ Supply Chain
Use Case: Inventory Optimization
โ€ข Forecast product demand
โ€ข Reduce overstock/stockouts
โ€ข Improve delivery times
Tools: Excel, Python, Power BI

7๏ธโƒฃ Education
Use Case: Student Performance Analysis
โ€ข Identify struggling students
โ€ข Evaluate teaching effectiveness
โ€ข Plan interventions
Tools: Google Sheets, Tableau, SQL

๐Ÿง  Practice Idea:
Choose one domain โ†’ Find a dataset โ†’ Ask a real question โ†’ Clean โ†’ Analyze โ†’ Visualize โ†’ Present

๐Ÿ’ฌ Tap โค๏ธ for more
โค13๐Ÿ‘5๐ŸŽ‰1
โœ… Python Control Flow Part 1: if, elif, else ๐Ÿง ๐Ÿ’ป

What is Control Flow?
๐Ÿ‘‰ Your code makes decisions
๐Ÿ‘‰ Runs only when conditions are met

โ€ข Each condition is True or False
โ€ข Python checks from top to bottom

๐Ÿ”น Basic if statement
age = 20  
if age >= 18:
print("You are eligible to vote")

โ–ถ๏ธ Checks if age is 18 or more. Prints "You are eligible to vote"

๐Ÿ”น if-else example
age = 16  
if age >= 18:
print("Eligible to vote")
else:
print("Not eligible")

โ–ถ๏ธ Age is 16, so it prints "Not eligible"

๐Ÿ”น elif for multiple conditions
marks = 72  
if marks >= 90:
print("Grade A")
elif marks >= 75:
print("Grade B")
elif marks >= 60:
print("Grade C")
else:
print("Fail")

โ–ถ๏ธ Marks = 72, so it matches >= 60 and prints "Grade C"

๐Ÿ”น Comparison Operators
a = 10  
b = 20
if a != b:
print("Values are different")

โ–ถ๏ธ Since 10 โ‰  20, it prints "Values are different"

๐Ÿ”น Logical Operators
age = 25  
has_id = True
if age >= 18 and has_id:
print("Entry allowed")

โ–ถ๏ธ Both conditions are True โ†’ prints "Entry allowed"

โš ๏ธ Common Mistakes:
โ€ข Using = instead of ==
โ€ข Bad indentation
โ€ข Comparing incompatible data types

๐Ÿ“Œ Mini Project โ€“ Age Category Checker
age = int(input("Enter age: "))  

if age < 13:
print("Child")
elif age <= 19:
print("Teen")
else:
print("Adult")

โ–ถ๏ธ Takes age as input and prints the category


๐Ÿ“ Practice Tasks:
1. Check if a number is even or odd
2. Check if number is +ve, -ve, or 0
3. Print the larger of two numbers
4. Check if a year is leap year

โœ… Practice Task Solutions โ€“ Try it yourself first ๐Ÿ‘‡

1๏ธโƒฃ Check if a number is even or odd
num = int(input("Enter a number: "))
if num % 2 == 0:
print("Even number")
else:
print("Odd number")

โ–ถ๏ธ % gives remainder. If remainder is 0, it's even.


2๏ธโƒฃ Check if number is positive, negative, or zero
num = float(input("Enter a number: "))
if num > 0:
print("Positive number")
elif num < 0:
print("Negative number")
else:
print("Zero")

โ–ถ๏ธ Uses > and < to check sign of number.


3๏ธโƒฃ Print the larger of two numbers
a = int(input("Enter first number: "))
b = int(input("Enter second number: "))

if a > b:
print("Larger number is:", a)
elif b > a:
print("Larger number is:", b)
else:
print("Both are equal")

โ–ถ๏ธ Compares a and b and prints the larger one.


4๏ธโƒฃ Check if a year is leap year
year = int(input("Enter a year: "))
if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0):
print("Leap year")
else:
print("Not a leap year")

โ–ถ๏ธ Follows leap year rules:
- Divisible by 4 โœ…
- But not divisible by 100 โŒ
- Unless also divisible by 400 โœ…


๐Ÿ“… Daily Rule:
โœ… Code 60 mins
โœ… Run every example
โœ… Change inputs and observe output

๐Ÿ’ฌ Tap โค๏ธ if this helped you!

Python Programming Roadmap: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L/2312
โค12
โœ… SQL for Data Analytics ๐Ÿ“Š๐Ÿง 

Mastering SQL is essential for analyzing, filtering, and summarizing large datasets. Here's a quick guide with real-world use cases:

1๏ธโƒฃ SELECT, WHERE, AND, OR
Filter specific rows from your data.
SELECT name, age  
FROM employees
WHERE department = 'Sales' AND age > 30;


2๏ธโƒฃ ORDER BY & LIMIT
Sort and limit your results.
SELECT name, salary  
FROM employees
ORDER BY salary DESC
LIMIT 5;


โ–ถ๏ธ Top 5 highest salaries

3๏ธโƒฃ GROUP BY + Aggregates (SUM, AVG, COUNT)
Summarize data by groups.
SELECT department, AVG(salary) AS avg_salary  
FROM employees
GROUP BY department;


4๏ธโƒฃ HAVING
Filter grouped data (use after GROUP BY).
SELECT department, COUNT(*) AS emp_count  
FROM employees
GROUP BY department
HAVING emp_count > 10;


5๏ธโƒฃ JOINs
Combine data from multiple tables.
SELECT e.name, d.name AS dept_name  
FROM employees e
JOIN departments d ON e.dept_id = d.id;


6๏ธโƒฃ CASE Statements
Create conditional logic inside queries.
SELECT name,  
CASE
WHEN salary > 70000 THEN 'High'
WHEN salary > 40000 THEN 'Medium'
ELSE 'Low'
END AS salary_band
FROM employees;


7๏ธโƒฃ DATE Functions
Analyze trends over time.
SELECT MONTH(join_date) AS join_month, COUNT(*)  
FROM employees
GROUP BY join_month;


8๏ธโƒฃ Subqueries
Nested queries for advanced filters.
SELECT name, salary  
FROM employees
WHERE salary > (SELECT AVG(salary) FROM employees);


9๏ธโƒฃ Window Functions (Advanced)
SELECT name, department, salary,  
RANK() OVER(PARTITION BY department ORDER BY salary DESC) AS dept_rank
FROM employees;


โ–ถ๏ธ Rank employees within each department

๐Ÿ’ก Used In:
โ€ข Marketing: campaign ROI, customer segments
โ€ข Sales: top performers, revenue by region
โ€ข HR: attrition trends, headcount by dept
โ€ข Finance: profit margins, cost control

SQL For Data Analytics: https://whatsapp.com/channel/0029Vb6hJmM9hXFCWNtQX944

๐Ÿ’ฌ Tap โค๏ธ for more
โค10
๐—™๐—ฅ๐—˜๐—˜ ๐—ข๐—ป๐—น๐—ถ๐—ป๐—ฒ ๐— ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ๐—ฐ๐—น๐—ฎ๐˜€๐˜€ ๐—ข๐—ป ๐—Ÿ๐—ฎ๐˜๐—ฒ๐˜€๐˜ ๐—ง๐—ฒ๐—ฐ๐—ต๐—ป๐—ผ๐—น๐—ผ๐—ด๐—ถ๐—ฒ๐˜€๐Ÿ˜

- Data Science 
- AI/ML
- Data Analytics
- UI/UX
- Full-stack Development 

Get Job-Ready Guidance in Your Tech Journey

๐—ฅ๐—ฒ๐—ด๐—ถ๐˜€๐˜๐—ฒ๐—ฟ ๐—™๐—ผ๐—ฟ ๐—™๐—ฅ๐—˜๐—˜๐Ÿ‘‡:- 

https://pdlink.in/4sw5Ev8

Date :- 11th January 2026
โค3
โœ… Data Analyst Resume Tips ๐Ÿงพ๐Ÿ“Š

Your resume should showcase skills + results + tools. Hereโ€™s what to focus on:

1๏ธโƒฃ Clear Career Summary 
โ€ข 2โ€“3 lines about who you are 
โ€ข Mention tools (Excel, SQL, Power BI, Python) 
โ€ข Example: โ€œData analyst with 2 yearsโ€™ experience in Excel, SQL, and Power BI. Specializes in sales insights and automation.โ€

2๏ธโƒฃ Skills Section 
โ€ข Technical: SQL, Excel, Power BI, Python, Tableau 
โ€ข Data: Cleaning, visualization, dashboards, insights 
โ€ข Soft: Problem-solving, communication, attention to detail

3๏ธโƒฃ Projects or Experience 
โ€ข Real or personal projects 
โ€ข Use the STAR format: Situation โ†’ Task โ†’ Action โ†’ Result 
โ€ข Show impact: โ€œCreated dashboard that reduced reporting time by 40%.โ€

4๏ธโƒฃ Tools and Certifications 
โ€ข Mention Udemy/Google/Coursera certificates  (optional)
โ€ข Highlight tools used in each project

5๏ธโƒฃ Education 
โ€ข Degree (if relevant) 
โ€ข Online courses with completion date

๐Ÿง  Tips: 
โ€ข Keep it 1 page if youโ€™re a fresher 
โ€ข Use action verbs: Analyzed, Automated, Built, Designed 
โ€ข Use numbers to show results: +%, time saved, etc.

๐Ÿ“Œ Practice Task: 
Write one resume bullet like: 
โ€œAnalyzed customer data using SQL and Power BI to find trends that increased sales by 12%.โ€

Double Tap โ™ฅ๏ธ For More
โค17
โœ… GitHub Profile Tips for Data Analysts ๐ŸŒ๐Ÿ’ผ

Your GitHub is more than code โ€” itโ€™s your digital resume. Here's how to make it stand out:

1๏ธโƒฃ Clean README (Profile)
โ€ข Add your name, title & tools
โ€ข Short about section
โ€ข Include: skills, top projects, certificates, contact
โœ… Example:
โ€œHi, Iโ€™m Rahul โ€“ a Data Analyst skilled in SQL, Python & Power BI.โ€

2๏ธโƒฃ Pin Your Best Projects
โ€ข Show 3โ€“6 strong repos
โ€ข Add clear README for each project:
- What it does
- Tools used
- Screenshots or demo links
โœ… Bonus: Include real data or visuals

3๏ธโƒฃ Use Commits & Contributions
โ€ข Contribute regularly
โ€ข Avoid empty profiles
โœ… Daily commits > 1 big push once a month

4๏ธโƒฃ Upload Resume Projects
โ€ข Excel dashboards
โ€ข SQL queries
โ€ข Python notebooks (Jupyter)
โ€ข BI project links (Power BI/Tableau public)

5๏ธโƒฃ Add Descriptions & Tags
โ€ข Use repo tags: sql, python, EDA, dashboard
โ€ข Write short project summary in repo description

๐Ÿง  Tips:
โ€ข Push only clean, working code
โ€ข Use folders, not messy files
โ€ข Update your profile bio with your LinkedIn

๐Ÿ“Œ Practice Task:
Upload your latest project โ†’ Write a README โ†’ Pin it to your profile

๐Ÿ’ฌ Tap โค๏ธ for more!
โค15
๐—›๐—ถ๐—ด๐—ต ๐——๐—ฒ๐—บ๐—ฎ๐—ป๐—ฑ๐—ถ๐—ป๐—ด ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐—ช๐—ถ๐˜๐—ต ๐—ฃ๐—น๐—ฎ๐—ฐ๐—ฒ๐—บ๐—ฒ๐—ป๐˜ ๐—”๐˜€๐˜€๐—ถ๐˜€๐˜๐—ฎ๐—ป๐—ฐ๐—ฒ๐Ÿ˜

Learn from IIT faculty and industry experts.

IIT Roorkee DS & AI Program :- https://pdlink.in/4qHVFkI

IIT Patna AI & ML :- https://pdlink.in/4pBNxkV

IIM Mumbai DM & Analytics :- https://pdlink.in/4jvuHdE

IIM Rohtak Product Management:- https://pdlink.in/4aMtk8i

IIT Roorkee Agentic Systems:- https://pdlink.in/4aTKgdc

Upskill in todayโ€™s most in-demand tech domains and boost your career ๐Ÿš€
โค5
โœ… Data Analyst Mistakes Beginners Should Avoid โš ๏ธ๐Ÿ“Š

1๏ธโƒฃ Ignoring Data Cleaning
โ€ข Jumping to charts too soon
โ€ข Overlooking missing or incorrect data
โœ… Clean before you analyze โ€” always

2๏ธโƒฃ Not Practicing SQL Enough
โ€ข Stuck on simple joins or filters
โ€ข Canโ€™t handle large datasets
โœ… Practice SQL daily โ€” it's your #1 tool

3๏ธโƒฃ Overusing Excel Only
โ€ข Limited automation
โ€ข Hard to scale with large data
โœ… Learn Python or SQL for bigger tasks

4๏ธโƒฃ No Real-World Projects
โ€ข Watching tutorials only
โ€ข Resume has no proof of skills
โœ… Analyze real datasets and publish your work

5๏ธโƒฃ Ignoring Business Context
โ€ข Insights without meaning
โ€ข Metrics without impact
โœ… Understand the why behind the data

6๏ธโƒฃ Weak Data Visualization Skills
โ€ข Crowded charts
โ€ข Wrong chart types
โœ… Use clean, simple, and clear visuals (Power BI, Tableau, etc.)

7๏ธโƒฃ Not Tracking Metrics Over Time
โ€ข Only point-in-time analysis
โ€ข No trends or comparisons
โœ… Use time-based metrics for better insight

8๏ธโƒฃ Avoiding Git & Version Control
โ€ข No backup
โ€ข Difficult collaboration
โœ… Learn Git to track and share your work

9๏ธโƒฃ No Communication Focus
โ€ข Great analysis, poorly explained
โœ… Practice writing insights clearly & presenting dashboards

๐Ÿ”Ÿ Ignoring Data Privacy
โ€ข Sharing raw data carelessly
โœ… Always anonymize and protect sensitive info

๐Ÿ’ก Master tools + think like a problem solver โ€” that's how analysts grow fast.

๐Ÿ’ฌ Tap โค๏ธ for more!
โค19
โœ… Power BI Project Ideas for Data Analysts ๐Ÿ“Š๐Ÿ’ก

Real-world projects help you stand out in job applications and interviews.

1๏ธโƒฃ Sales Dashboard
โ€ข Track revenue, profit, and sales by region/product
โ€ข Add slicers for year, month, category
โ€ข Source: Sample Superstore dataset

2๏ธโƒฃ HR Analytics Dashboard
โ€ข Analyze employee attrition, performance, and satisfaction
โ€ข KPIs: attrition rate, avg tenure, engagement score
โ€ข Use Excel or mock HR dataset

3๏ธโƒฃ E-commerce Analysis
โ€ข Show total orders, AOV (average order value), top-selling items
โ€ข Use date filters, category breakdowns
โ€ข Optional: add customer segmentation

4๏ธโƒฃ Financial Report
โ€ข Monthly expenses vs income
โ€ข Budget variance tracking
โ€ข Charts for category-wise breakdown

5๏ธโƒฃ Healthcare Analytics
โ€ข Hospital admissions, treatment outcomes, patient demographics
โ€ข Drill-through: see patient-level detail by department
โ€ข Public health datasets available online

6๏ธโƒฃ Marketing Campaign Tracker
โ€ข Click-through rates, conversion rates, campaign ROI
โ€ข Compare across channels (email, social, paid ads)

๐Ÿง  Bonus Tips:
โ€ข Use DAX to create measures
โ€ข Add tooltips and slicers
โ€ข Make the design clean and professional

๐Ÿ“Œ Practice Task:
Choose one topic โ†’ Get a dataset โ†’ Build a dashboard โ†’ Upload screenshots to GitHub

Power BI Resources: https://whatsapp.com/channel/0029Vai1xKf1dAvuk6s1v22c

๐Ÿ’ฌ Tap โค๏ธ for more!
โค12
๐Ÿ“Š ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—™๐—ฅ๐—˜๐—˜ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐Ÿ˜

๐Ÿš€Upgrade your skills with industry-relevant Data Analytics training at ZERO cost 

โœ… Beginner-friendly
โœ… Certificate on completion
โœ… High-demand skill in 2026

๐‹๐ข๐ง๐ค ๐Ÿ‘‡:- 

https://pdlink.in/497MMLw

๐Ÿ“Œ 100% FREE โ€“ Limited seats available!
โœ… Essential Tools for Data Analytics ๐Ÿ“Š๐Ÿ› ๏ธ

๐Ÿ”ฃ 1๏ธโƒฃ Excel / Google Sheets
โ€ข Quick data entry & analysis
โ€ข Pivot tables, charts, functions
โ€ข Good for early-stage exploration

๐Ÿ’ป 2๏ธโƒฃ SQL (Structured Query Language)
โ€ข Work with databases (MySQL, PostgreSQL, etc.)
โ€ข Query, filter, join, and aggregate data
โ€ข Must-know for data from large systems

๐Ÿ 3๏ธโƒฃ Python (with Libraries)
โ€ข Pandas โ€“ Data manipulation
โ€ข NumPy โ€“ Numerical analysis
โ€ข Matplotlib / Seaborn โ€“ Data visualization
โ€ข OpenPyXL / xlrd โ€“ Work with Excel files

๐Ÿ“Š 4๏ธโƒฃ Power BI / Tableau
โ€ข Create dashboards and visual reports
โ€ข Drag-and-drop interface for non-coders
โ€ข Ideal for business insights & presentations

๐Ÿ“ 5๏ธโƒฃ Google Data Studio
โ€ข Free dashboard tool
โ€ข Connects easily to Google Sheets, BigQuery
โ€ข Great for real-time reporting

๐Ÿงช 6๏ธโƒฃ Jupyter Notebook
โ€ข Interactive Python coding
โ€ข Combine code, text, and visuals in one place
โ€ข Perfect for storytelling with data

๐Ÿ› ๏ธ 7๏ธโƒฃ R Programming (Optional)
โ€ข Popular in statistical analysis
โ€ข Strong in academic and research settings

โ˜๏ธ 8๏ธโƒฃ Cloud & Big Data Tools
โ€ข Google BigQuery, Snowflake โ€“ Large-scale analysis
โ€ข Excel + SQL + Python still work as a base

๐Ÿ’ก Tip:
Start with Excel + SQL + Python (Pandas) โ†’ Add BI tools for reporting.

๐Ÿ’ฌ Tap โค๏ธ for more!
โค19
๐—ฃ๐—น๐—ฎ๐—ฐ๐—ฒ๐—บ๐—ฒ๐—ป๐˜ ๐—”๐˜€๐˜€๐—ถ๐˜€๐˜๐—ฎ๐—ป๐—ฐ๐—ฒ ๐—ฃ๐—ฟ๐—ผ๐—ด๐—ฟ๐—ฎ๐—บ ๐—ถ๐—ป ๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ฎ๐—ป๐—ฑ ๐—”๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ถ๐—ฎ๐—น ๐—œ๐—ป๐˜๐—ฒ๐—น๐—น๐—ถ๐—ด๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ฏ๐˜† ๐—œ๐—œ๐—ง ๐—ฅ๐—ผ๐—ผ๐—ฟ๐—ธ๐—ฒ๐—ฒ๐Ÿ˜

Deadline: 18th January 2026

Eligibility: Open to everyone
Duration: 6 Months
Program Mode: Online
Taught By: IIT Roorkee Professors

Companies majorly hire candidates having Data Science and Artificial Intelligence knowledge these days.

๐—ฅ๐—ฒ๐—ด๐—ถ๐˜€๐˜๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—Ÿ๐—ถ๐—ป๐—ธ๐Ÿ‘‡

https://pdlink.in/4qHVFkI

Only Limited Seats Available!
โค3
โœ… SQL Interview Roadmap โ€“ Step-by-Step Guide to Crack Any SQL Round ๐Ÿ’ผ๐Ÿ“Š

Whether you're applying for Data Analyst, BI, or Data Engineer roles โ€” SQL rounds are must-clear. Here's your focused roadmap:

1๏ธโƒฃ Core SQL Concepts
๐Ÿ”น Understand RDBMS, tables, keys, schemas
๐Ÿ”น Data types, NULLs, constraints
๐Ÿง  Interview Tip: Be able to explain Primary vs Foreign Key.

2๏ธโƒฃ Basic Queries
๐Ÿ”น SELECT, FROM, WHERE, ORDER BY, LIMIT
๐Ÿง  Practice: Filter and sort data by multiple columns.

3๏ธโƒฃ Joins โ€“ Very Frequently Asked!
๐Ÿ”น INNER, LEFT, RIGHT, FULL OUTER JOIN
๐Ÿง  Interview Tip: Explain the difference with examples.
๐Ÿงช Practice: Write queries using joins across 2โ€“3 tables.

4๏ธโƒฃ Aggregations & GROUP BY
๐Ÿ”น COUNT, SUM, AVG, MIN, MAX, HAVING
๐Ÿง  Common Question: Total sales per category where total > X.

5๏ธโƒฃ Window Functions
๐Ÿ”น ROW_NUMBER(), RANK(), DENSE_RANK(), LAG(), LEAD()
๐Ÿง  Interview Favorite: Top N per group, previous row comparison.

6๏ธโƒฃ Subqueries & CTEs
๐Ÿ”น Write queries inside WHERE, FROM, and using WITH
๐Ÿง  Use Case: Filtering on aggregated data, simplifying logic.

7๏ธโƒฃ CASE Statements
๐Ÿ”น Add logic directly in SELECT
๐Ÿง  Example: Categorize users based on spend or activity.

8๏ธโƒฃ Data Cleaning & Transformation
๐Ÿ”น Handle NULLs, format dates, string manipulation (TRIM, SUBSTRING)
๐Ÿง  Real-world Task: Clean user input data.

9๏ธโƒฃ Query Optimization Basics
๐Ÿ”น Understand indexing, query plan, performance tips
๐Ÿง  Interview Tip: Difference between WHERE and HAVING.

๐Ÿ”Ÿ Real-World Scenarios
๐Ÿง  Must Practice:
โ€ข Sales funnel
โ€ข Retention cohort
โ€ข Churn rate
โ€ข Revenue by channel
โ€ข Daily active users

๐Ÿงช Practice Platforms
โ€ข LeetCode (Easyโ€“Hard SQL)
โ€ข StrataScratch (Real business cases)
โ€ข Mode Analytics (SQL + Visualization)
โ€ข HackerRank SQL (MCQs + Coding)

๐Ÿ’ผ Final Tip:
Explain why your query works, not just what it does. Speak your logic clearly.

๐Ÿ’ฌ Tap โค๏ธ for more!
โค5๐Ÿ‘4
๐Ÿš€Greetings from PVR Cloud Tech!! ๐ŸŒˆ

๐Ÿ”ฅ Do you want to become a Master in Azure Cloud Data Engineering?

If you're ready to build in-demand skills and unlock exciting career opportunities,
this is the perfect place to start!

๐Ÿ“Œ Start Date: 17th Jan 2026

โฐ Time: 07 AM โ€“ 8 AM IST | Saturday

๐Ÿ”— ๐ˆ๐ง๐ญ๐ž๐ซ๐ž๐ฌ๐ญ๐ž๐ ๐ข๐ง ๐€๐ณ๐ฎ๐ซ๐ž ๐ƒ๐š๐ญ๐š ๐„๐ง๐ ๐ข๐ง๐ž๐ž๐ซ๐ข๐ง๐  ๐ฅ๐ข๐ฏ๐ž ๐ฌ๐ž๐ฌ๐ฌ๐ข๐จ๐ง๐ฌ?

๐Ÿ‘‰ Message us on WhatsApp:

https://wa.me/919346060794?text=Interested_to_join_azure_live_sessions

๐Ÿ”น Course Content:

https://drive.google.com/file/d/1YufWV0Ru6SyYt-oNf5Mi5H8mmeV_kfP-/view

๐Ÿ“ฑ Join WhatsApp Group:

https://chat.whatsapp.com/GCdcWr7v5JI1taguJrgU9j

๐Ÿ“ฅ Register Now:

https://forms.gle/PK1PnsLQf6ZVu7tdA

๐Ÿ“บ WhatsApp Channel:

https://www.whatsapp.com/channel/0029Vb60rGU8V0thkpbFFW2n

Team 
PVR Cloud Tech :) 
+91-9346060794
โค4