Data Analytics
108K subscribers
128 photos
2 files
796 links
Perfect channel to learn Data Analytics

Learn SQL, Python, Alteryx, Tableau, Power BI and many more

For Promotions: @coderfun @love_data
Download Telegram
โœ… If you're serious about learning Data Analytics โ€” follow this roadmap ๐Ÿ“Š๐Ÿง 

1. Learn Excel basics โ€“ formulas, pivot tables, charts
2. Master SQL โ€“ SELECT, JOIN, GROUP BY, CTEs, window functions
3. Get good at Python โ€“ especially Pandas, NumPy, Matplotlib, Seaborn
4. Understand statistics โ€“ mean, median, standard deviation, correlation, hypothesis testing
5. Clean and wrangle data โ€“ handle missing values, outliers, normalization, encoding
6. Practice Exploratory Data Analysis (EDA) โ€“ univariate, bivariate analysis
7. Work on real datasets โ€“ sales, customer, finance, healthcare, etc.
8. Use Power BI or Tableau โ€“ create dashboards and data stories
9. Learn business metrics KPIs โ€“ retention rate, CLV, ROI, conversion rate
10. Build mini-projects โ€“ sales dashboard, HR analytics, customer segmentation
11. Understand A/B Testing โ€“ setup, analysis, significance
12. Practice SQL + Python combo โ€“ extract, clean, visualize, analyze
13. Learn about data pipelines โ€“ basic ETL concepts, Airflow, dbt
14. Use version control โ€“ Git GitHub for all projects
15. Document your analysis โ€“ use Jupyter or Notion to explain insights
16. Practice storytelling with data โ€“ explain โ€œso what?โ€ clearly
17. Know how to answer business questions using data
18. Explore cloud tools (optional) โ€“ BigQuery, AWS S3, Redshift
19. Solve case studies โ€“ product analysis, churn, marketing impact
20. Apply for internships/freelance โ€“ gain experience + build resume
21. Post your projects on GitHub or portfolio site
22. Prepare for interviews โ€“ SQL, Python, scenario-based questions
23. Keep learning โ€“ YouTube, courses, Kaggle, LinkedIn Learning

๐Ÿ’ก Tip: Focus on building 3โ€“5 strong projects and learn to explain them in interviews.

๐Ÿ’ฌ Tap โค๏ธ for more!
โค48๐Ÿ‘1
โœ… Top Data Analytics Interview Questions with Answers โ€“ Part 1 ๐Ÿง ๐Ÿ“ˆ

1๏ธโƒฃ What is the difference between Data Analytics and Data Science?
Data Analytics focuses on analyzing existing data to find trends and insights.
Data Science includes analytics but adds machine learning, statistical modeling predictions.

2๏ธโƒฃ What is the difference between structured and unstructured data?
โ€ข Structured: Organized (tables, rows, columns) โ€“ e.g., Excel, SQL DB
โ€ข Unstructured: No fixed format โ€“ e.g., images, videos, social media posts

3๏ธโƒฃ What is Data Cleaning? Why is it important?
Removing or correcting inaccurate, incomplete, or irrelevant data.
It ensures accurate analysis, better decision-making, and model performance.

4๏ธโƒฃ Explain VLOOKUP and Pivot Tables in Excel.
โ€ข VLOOKUP: Searches for a value in a column and returns a value in the same row from another column.
โ€ข Pivot Table: Summarizes data by categories (grouping, totals, averages).

5๏ธโƒฃ What is SQL JOIN?
Combines rows from two or more tables based on a related column.
Types: INNER JOIN, LEFT JOIN, RIGHT JOIN, FULL JOIN.

6๏ธโƒฃ What is EDA (Exploratory Data Analysis)?
Itโ€™s the process of visually and statistically exploring datasets to understand their structure, patterns, and anomalies.

7๏ธโƒฃ Difference between COUNT(), SUM(), AVG(), MIN(), MAX() in SQL?
These are aggregate functions used to perform calculations on columns.

๐Ÿ’ฌ Tap โค๏ธ for Part 2
โค32๐Ÿ‘2
โœ… Top Data Analytics Interview Questions with Answers โ€“ Part 2 ๐Ÿง ๐Ÿ“Š

8๏ธโƒฃ What is data normalization?
Itโ€™s the process of scaling data to fit within a specific range (like 0 to 1) to improve model performance or consistency in analysis.

9๏ธโƒฃ What are KPIs?
Key Performance Indicators โ€“ measurable values used to track performance against objectives (e.g., revenue, conversion rate, churn rate).

๐Ÿ”Ÿ What is the difference between INNER JOIN and LEFT JOIN?
โ€ข INNER JOIN: Returns records with matching values in both tables.
โ€ข LEFT JOIN: Returns all records from the left table and matched ones from the right (NULLs if no match).

1๏ธโƒฃ1๏ธโƒฃ What is a dashboard in data analytics?
A visual representation of key metrics and data points using charts, graphs, and KPIs to support decision-making.

1๏ธโƒฃ2๏ธโƒฃ What are outliers and how do you handle them?
Outliers are data points far from others. Handle them by:
โ€ข Removing
โ€ข Capping
โ€ข Using robust statistical methods
โ€ข Transformation (e.g., log)

1๏ธโƒฃ3๏ธโƒฃ What is correlation analysis?
It measures the relationship between two variables. Values range from -1 to 1. Closer to ยฑ1 means stronger correlation.

1๏ธโƒฃ4๏ธโƒฃ Difference between correlation and causation?
โ€ข Correlation: Two variables move together.
โ€ข Causation: One variable *causes* the other to change.

1๏ธโƒฃ5๏ธโƒฃ What is data storytelling?
Itโ€™s presenting insights from data in a compelling narrative using visuals, context, and recommendations.

๐Ÿ’ฌ Tap โค๏ธ for Part 3
โค28
โœ… Top Data Analytics Interview Questions with Answers โ€“ Part 3 ๐Ÿ“Š๐Ÿง 

1๏ธโƒฃ6๏ธโƒฃ What is data cleaning?
The process of fixing or removing incorrect, corrupted, or incomplete data to ensure quality and reliability in analysis.

1๏ธโƒฃ7๏ธโƒฃ What is EDA (Exploratory Data Analysis)?
Itโ€™s the initial step in data analysis where we explore, summarize, and visualize data to understand patterns, outliers, or relationships.

1๏ธโƒฃ8๏ธโƒฃ What is the difference between structured and unstructured data?
โ€ข Structured: Organized in tables (e.g., SQL databases).
โ€ข Unstructured: No fixed format (e.g., text, images, videos).

1๏ธโƒฃ9๏ธโƒฃ What is a data pipeline?
A series of steps to collect, process, and move data from one system to another โ€” often automated.

2๏ธโƒฃ0๏ธโƒฃ Explain the difference between OLAP and OLTP.
โ€ข OLAP (Online Analytical Processing): For complex queries reporting.
โ€ข OLTP (Online Transaction Processing): For real-time transactions.

2๏ธโƒฃ1๏ธโƒฃ What is a dimension vs. a measure in data analysis?
โ€ข Dimension: Descriptive attribute (e.g., Country, Product)
โ€ข Measure: Numeric value you analyze (e.g., Sales, Profit)

2๏ธโƒฃ2๏ธโƒฃ What is data validation?
The process of ensuring data is accurate and clean before analysis or input into systems.

2๏ธโƒฃ3๏ธโƒฃ What is cross-tabulation?
A table that shows the relationship between two categorical variables (often used in Excel or Power BI).

2๏ธโƒฃ4๏ธโƒฃ What is the Pareto principle in data analysis?
Also called 80/20 rule โ€” 80% of effects come from 20% of causes (e.g., 20% of products generate 80% of sales).

2๏ธโƒฃ5๏ธโƒฃ What is drill-down in dashboards?
An interactive feature allowing users to go from summary-level data to detailed-level data by clicking.

๐Ÿ’ฌ Tap โค๏ธ for Part 4
โค12๐Ÿ‘5
๐Ÿš€ Roadmap to Master Data Analytics in 50 Days! ๐Ÿ“Š๐Ÿ“ˆ

๐Ÿ“… Week 1โ€“2: Foundations
๐Ÿ”น Day 1โ€“3: What is Data Analytics? Tools overview
๐Ÿ”น Day 4โ€“7: Excel/Google Sheets (formulas, pivot tables, charts)
๐Ÿ”น Day 8โ€“10: SQL basics (SELECT, WHERE, JOIN, GROUP BY)

๐Ÿ“… Week 3โ€“4: Programming Data Handling
๐Ÿ”น Day 11โ€“15: Python for data (variables, loops, functions)
๐Ÿ”น Day 16โ€“20: Pandas, NumPy โ€“ data cleaning, filtering, aggregation

๐Ÿ“… Week 5โ€“6: Visualization EDA
๐Ÿ”น Day 21โ€“25: Data visualization (Matplotlib, Seaborn)
๐Ÿ”น Day 26โ€“30: Exploratory Data Analysis โ€“ ask questions, find trends

๐Ÿ“… Week 7โ€“8: BI Tools Advanced Skills
๐Ÿ”น Day 31โ€“35: Power BI / Tableau โ€“ dashboards, filters, DAX
๐Ÿ”น Day 36โ€“40: Real-world case studies โ€“ sales, HR, marketing data

๐ŸŽฏ Final Stretch: Projects Career Prep
๐Ÿ”น Day 41โ€“45: Capstone projects (end-to-end analysis + report)
๐Ÿ”น Day 46โ€“48: Resume, GitHub portfolio, LinkedIn optimization
๐Ÿ”น Day 49โ€“50: Mock interviews + SQL + Excel + scenario questions

๐Ÿ’ฌ Tap โค๏ธ for more!
โค54๐Ÿ‘2
โœ… Data Analytics Foundations: Part-1 ๐Ÿ“Š๐Ÿ’ป

๐Ÿ” What is Data Analytics?
Itโ€™s the process of examining data to uncover insights, trends, and patterns to support decision-making.

๐Ÿ“Œ 4 Key Types of Data Analytics:

1๏ธโƒฃ Descriptive Analytics โ€“ What happened?
โ†’ Summarizes past data (e.g., sales reports)

2๏ธโƒฃ Diagnostic Analytics โ€“ Why did it happen?
โ†’ Identifies causes/trends behind outcomes

3๏ธโƒฃ Predictive Analytics โ€“ What might happen next?
โ†’ Uses models to forecast future outcomes

4๏ธโƒฃ Prescriptive Analytics โ€“ What should we do?
โ†’ Recommends actions based on data insights

๐Ÿงฐ Popular Tools in Data Analytics:

1. Excel / Google Sheets
โ†’ Basics of data cleaning, formulas, pivot tables

2. SQL
โ†’ Extract, join, and filter data from databases

3. Power BI / Tableau
โ†’ Create dashboards and visual reports

4. Python (Pandas, NumPy, Matplotlib)
โ†’ Automate tasks, analyze large datasets, visualize insights

5. R
โ†’ Statistical analysis and data modeling

6. Google Data Studio
โ†’ Simple, free tool for creating interactive dashboards

7. SAS / SPSS (for statistical work)
โ†’ Used in healthcare, finance, and academic sectors

๐Ÿ“ˆ Basic Skills Needed:

โ€ข Data cleaning & preparation
โ€ข Data visualization
โ€ข Statistical analysis
โ€ข Business understanding
โ€ข Storytelling with data

๐Ÿ’ฌ Tap โค๏ธ for more!
โค28๐Ÿ‘5
โœ… Data Analytics Foundations Part-2: Excel for Data Analytics ๐Ÿ“Š๐Ÿงฎ

Excel is one of the most accessible and powerful tools for data cleaning, analysis, and quick visualizationsโ€”great for beginners and pros alike.

๐Ÿ“Œ Key Excel Features for Data Analytics:

1๏ธโƒฃ Formulas  Functions 
โ€ข SUM(), AVERAGE(), COUNT() โ€“ Basic calculations 
โ€ข IF(), VLOOKUP(), INDEX-MATCH() โ€“ Conditional logic  lookups 
โ€ข TEXT(), LEFT(), RIGHT() โ€“ Data formatting

2๏ธโƒฃ Pivot Tables 
โ€ข Summarize large datasets in seconds 
โ€ข Drag  drop to create custom reports 
โ€ข Group, filter, and sort easily

3๏ธโƒฃ Charts  Visualizations 
โ€ข Column, Line, Pie, and Combo charts 
โ€ข Use sparklines for quick trends 
โ€ข Add slicers for interactivity

4๏ธโƒฃ Data Cleaning Tools 
โ€ข Remove duplicates 
โ€ข Text to columns 
โ€ข Flash Fill for auto-pattern detection

5๏ธโƒฃ Data Analysis ToolPak 
โ€ข Run regression, t-tests, and more (enable from Add-ins)

6๏ธโƒฃ Conditional Formatting 
โ€ข Highlight trends, outliers, and specific values visually

7๏ธโƒฃ Filters  Sort 
โ€ข Organize and explore subsets of data quickly

๐Ÿ’ก Pro Tip: Use tables (Ctrl + T) to auto-expand formulas, enable filtering, and apply structured references.

Excel Resources: https://whatsapp.com/channel/0029VaifY548qIzv0u1AHz3i

๐Ÿ’ฌ Tap โค๏ธ for more!
โค18๐Ÿ‘1
โœ… Python Basics for Data Analytics ๐Ÿ“Š๐Ÿ

Python is one of the most in-demand languages for data analytics due to its simplicity, flexibility, and powerful libraries. Here's a detailed guide to get you started with the basics:

๐Ÿง  1. Variables Data Types
You use variables to store data.

name = "Alice"        # String  
age = 28 # Integer
height = 5.6 # Float
is_active = True # Boolean

Use Case: Store user details, flags, or calculated values.

๐Ÿ”„ 2. Data Structures

โœ… List โ€“ Ordered, changeable
fruits = ['apple', 'banana', 'mango']  
print(fruits[0]) # apple

โœ… Dictionary โ€“ Key-value pairs
person = {'name': 'Alice', 'age': 28}  
print(person['name']) # Alice

โœ… Tuple Set
Tuples = immutable, Sets = unordered unique

โš™๏ธ 3. Conditional Statements
score = 85  
if score >= 90:
print("Excellent")
elif score >= 75:
print("Good")
else:
print("Needs improvement")

Use Case: Decision making in data pipelines

๐Ÿ” 4. Loops
For loop
for fruit in fruits:  
print(fruit)


While loop
count = 0  
while count < 3:
print("Hello")
count += 1

๐Ÿ”ฃ 5. Functions
Reusable blocks of logic

def add(x, y):  
return x + y

print(add(10, 5)) # 15

๐Ÿ“‚ 6. File Handling
Read/write data files

with open('data.txt', 'r') as file:  
content = file.read()
print(content)

๐Ÿงฐ 7. Importing Libraries
import pandas as pd  
import numpy as np
import matplotlib.pyplot as plt

Use Case: These libraries supercharge Python for analytics.

๐Ÿงน 8. Real Example: Analyzing Data
import pandas as pd  

df = pd.read_csv('sales.csv') # Load data
print(df.head()) # Preview

# Basic stats
print(df.describe())
print(df['Revenue'].mean())


๐ŸŽฏ Why Learn Python for Data Analytics?
โœ… Easy to learn
โœ… Huge library support (Pandas, NumPy, Matplotlib)
โœ… Ideal for cleaning, exploring, and visualizing data
โœ… Works well with SQL, Excel, APIs, and BI tools

Python Programming: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L

๐Ÿ’ฌ Double Tap โค๏ธ for more!
โค22๐Ÿ‘10
๐—™๐—ฅ๐—˜๐—˜ ๐—ข๐—ป๐—น๐—ถ๐—ป๐—ฒ ๐— ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ๐—ฐ๐—น๐—ฎ๐˜€๐˜€ ๐—•๐˜† ๐—œ๐—ป๐—ฑ๐˜‚๐˜€๐˜๐—ฟ๐˜† ๐—˜๐˜…๐—ฝ๐—ฒ๐—ฟ๐˜๐˜€ ๐Ÿ˜

Roadmap to land your dream job in top product-based companies

๐—›๐—ถ๐—ด๐—ต๐—น๐—ถ๐—ด๐—ต๐˜๐—ฒ๐˜€:-
- 90-Day Placement Plan
- Tech & Non-Tech Career Path
- Interview Preparation Tips
- Live Q&A

๐—ฅ๐—ฒ๐—ด๐—ถ๐˜€๐˜๐—ฒ๐—ฟ ๐—™๐—ผ๐—ฟ ๐—™๐—ฅ๐—˜๐—˜๐Ÿ‘‡:- 

https://pdlink.in/3Ltb3CE

Date & Time:- 06th January 2026 , 7PM
โค2
โœ… Exploratory Data Analysis (EDA) ๐Ÿ”๐Ÿ“Š

EDA is the first and most important step in any data analytics or machine learning project. It helps you understand the data, spot patterns, detect outliers, and prepare for modeling.

1๏ธโƒฃ Load and Understand the Data
import pandas as pd

df = pd.read_csv("sales_data.csv")
print(df.head())
print(df.shape)

Goal: Get the structure (rows, columns), data types, and sample values.

2๏ธโƒฃ Summary and Info
df.info()
df.describe()

Goal:
โ€ข See null values
โ€ข Understand distributions (mean, std, min, max)

3๏ธโƒฃ Check for Missing Values
df.isnull().sum()

๐Ÿ“Œ Fix options:
โ€ข df.fillna(0) โ€“ Fill missing values
โ€ข df.dropna() โ€“ Remove rows with nulls

4๏ธโƒฃ Unique Values Frequency Counts
df['Region'].value_counts()
df['Product'].unique()

Goal: Understand categorical features.

5๏ธโƒฃ Data Type Conversion (if needed)
df['Date'] = pd.to_datetime(df['Date'])
df['Amount'] = df['Amount'].astype(float)


6๏ธโƒฃ Detecting Duplicates Removing
df.duplicated().sum()
df.drop_duplicates(inplace=True)


7๏ธโƒฃ Univariate Analysis (1 Variable)
import seaborn as sns
import matplotlib.pyplot as plt

sns.histplot(df['Sales'])
sns.boxplot(y=df['Profit'])
plt.show()

Goal: View distribution and detect outliers.

8๏ธโƒฃ Bivariate Analysis (2 Variables)
sns.scatterplot(x='Sales', y='Profit', data=df)
sns.boxplot(x='Region', y='Sales', data=df)


9๏ธโƒฃ Correlation Analysis
sns.heatmap(df.corr(numeric_only=True), annot=True)

Goal: Identify relationships between numerical features.

๐Ÿ”Ÿ Grouped Aggregation
df.groupby('Region')['Revenue'].sum()
df.groupby(['Region', 'Category'])['Sales'].mean()

Goal: Segment data and compare.

1๏ธโƒฃ1๏ธโƒฃ Time Series Trends (If date present)
df.set_index('Date')['Sales'].resample('M').sum().plot()
plt.title("Monthly Sales Trend")


๐Ÿง  Key Questions to Ask During EDA:
โ€ข Are there missing or duplicate values?
โ€ข Which products or regions perform best?
โ€ข Are there seasonal trends in sales?
โ€ข Are there outliers or strange values?
โ€ข Which variables are strongly correlated?

๐ŸŽฏ Goal of EDA:
โ€ข Spot data quality issues
โ€ข Understand feature relationships
โ€ข Prepare for modeling or dashboarding

๐Ÿ’ฌ Tap โค๏ธ for more!
โค12๐Ÿ‘Œ6
โœ… SQL Functions Interview Questions with Answers ๐ŸŽฏ๐Ÿ“š

1๏ธโƒฃ Q: What is the difference between COUNT(*) and COUNT(column_name)?
A:
- COUNT(*) counts all rows, including those with NULLs.
- COUNT(column_name) counts only rows where the column is NOT NULL.

2๏ธโƒฃ Q: When would you use GROUP BY with aggregate functions?
A:
Use GROUP BY when you want to apply aggregate functions per group (e.g., department-wise total salary):
SELECT department, SUM(salary) FROM employees GROUP BY department;


3๏ธโƒฃ Q: What does the COALESCE() function do?
A:
COALESCE() returns the first non-null value from the list of arguments.
Example:
SELECT COALESCE(phone, 'N/A') FROM users;


4๏ธโƒฃ Q: How does the CASE statement work in SQL?
A:
CASE is used for conditional logic inside queries.
Example:
SELECT name,  
CASE
WHEN score >= 90 THEN 'A'
WHEN score >= 75 THEN 'B'
ELSE 'C'
END AS grade
FROM students;


5๏ธโƒฃ Q: Whatโ€™s the use of SUBSTRING() function?
A:
It extracts a part of a string.
Example:
SELECT SUBSTRING('DataScience', 1, 4); -- Output: Data


6๏ธโƒฃ Q: Whatโ€™s the output of LENGTH('SQL')?
A:
It returns the length of the string: 3

7๏ธโƒฃ Q: How do you find the number of days between two dates?
A:
Use DATEDIFF(end_date, start_date)
Example:
SELECT DATEDIFF('2026-01-10', '2026-01-05'); -- Output: 5


8๏ธโƒฃ Q: What does ROUND() do in SQL?
A:
It rounds a number to the specified decimal places.
Example:
SELECT ROUND(3.456, 2); -- Output: 3.46


๐Ÿ’ก Pro Tip: Always mention real use cases when answering โ€” it shows practical understanding.

๐Ÿ’ฌ Tap โค๏ธ for more!
โค20
1๏ธโƒฃ What does the following code print?

print("Hello, Python")
Anonymous Quiz
15%
A. Hello Python
71%
B. Hello, Python
10%
C. "Hello, Python"
4%
D. Syntax Error
โค9
2๏ธโƒฃ Which of these is a valid variable name in Python?
Anonymous Quiz
11%
A. 1name
80%
B. name_1
3%
C. name-1
โค5
3๏ธโƒฃ What is the output of this code?

print(10 // 3)
Anonymous Quiz
50%
A. 3.33
37%
B. 3
3%
C. 4
10%
D. 3.0
โค8๐Ÿ”ฅ2
Which operator is used for string repetition?
Anonymous Quiz
22%
A. +
55%
B. *
16%
C. &
7%
D. %
โค7
What will this code output?*

print("Hi " * 2)
Anonymous Quiz
39%
A. HiHi
11%
B. Hi 2
42%
C. Hi Hi
9%
D. Error
โค5
What is the correct way to check the type of a variable x?
Anonymous Quiz
22%
A. typeof(x)
13%
B. checktype(x)
55%
C. type(x)
10%
D. x.type()
โค7๐Ÿ‘4๐Ÿ‘Ž1
๐—ง๐—ผ๐—ฝ ๐Ÿฑ ๐—œ๐—ป-๐——๐—ฒ๐—บ๐—ฎ๐—ป๐—ฑ ๐—ฆ๐—ธ๐—ถ๐—น๐—น๐˜€ ๐˜๐—ผ ๐—™๐—ผ๐—ฐ๐˜‚๐˜€ ๐—ผ๐—ป ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฒ๐Ÿ˜

Start learning industry-relevant data skills today at zero cost!

๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€:- https://pdlink.in/497MMLw

๐—”๐—œ & ๐— ๐—Ÿ :- https://pdlink.in/4bhetTu

๐—–๐—น๐—ผ๐˜‚๐—ฑ ๐—–๐—ผ๐—บ๐—ฝ๐˜‚๐˜๐—ถ๐—ป๐—ด:- https://pdlink.in/3LoutZd

๐—–๐˜†๐—ฏ๐—ฒ๐—ฟ ๐—ฆ๐—ฒ๐—ฐ๐˜‚๐—ฟ๐—ถ๐˜๐˜†:- https://pdlink.in/3N9VOyW

๐—ข๐˜๐—ต๐—ฒ๐—ฟ ๐—ง๐—ฒ๐—ฐ๐—ต ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€:- https://pdlink.in/4qgtrxU

๐ŸŽ“ Enroll Now & Get Certified
๐Ÿ‘3โค1
โœ… BI Tools Part-1: Introduction to Power BI  Tableau ๐Ÿ“Š๐Ÿ–ฅ๏ธ 

If you want to turn raw data into powerful stories and dashboards, Business Intelligence (BI) tools are a must. Power BI and Tableau are two of the most in-demand tools in analytics today.

1๏ธโƒฃ What is Power BI? 
Power BI is a business analytics tool by Microsoft that helps visualize data and share insights across your organization. 
โ€ข Drag-and-drop interface 
โ€ข Seamless with Excel  Azure 
โ€ข Used widely in enterprises 

2๏ธโƒฃ What is Tableau? 
Tableau is a powerful visualization platform known for interactive dashboards and beautiful charts. 
โ€ข User-friendly 
โ€ข Real-time analytics 
โ€ข Great for storytelling with data 

3๏ธโƒฃ Why learn Power BI or Tableau? 
โ€ข Demand in job market is very high 
โ€ข Helps you convert raw data โ†’ meaningful insights 
โ€ข Often used by data analysts, business analysts, decision-makers 

4๏ธโƒฃ Basic Features You'll Learn: 
โ€ข Connecting data sources (Excel, SQL, CSV, etc.) 
โ€ข Creating bar, line, pie, map visuals 
โ€ข Using filters, slicers, and drill-through 
โ€ข Building dashboards  reports 
โ€ข Publishing and sharing with teams 

5๏ธโƒฃ Real-World Use Cases: 
โ€ข Sales dashboard tracking targets 
โ€ข HR dashboard showing attrition and hiring trends 
โ€ข Marketing funnel analysis 
โ€ข Financial KPI tracking 

๐Ÿ”ง Tools to Install: 
โ€ข Power BI Desktop (Free for Windows) 
โ€ข Tableau Public (Free version for practice)

๐Ÿง  Practice Task: 
โ€ข Download a sample Excel dataset (e.g. sales data) 
โ€ข Load it into Power BI or Tableau 
โ€ข Try building 3 simple visuals: bar chart, pie chart, and table 

Power BI: https://whatsapp.com/channel/0029Vai1xKf1dAvuk6s1v22c

Tableau: https://whatsapp.com/channel/0029VasYW1V5kg6z4EHOHG1t

๐Ÿ’ฌ Tap โค๏ธ for more!
โค6๐Ÿ‘3
โœ… BI Tools Part-2: Power BI Hands-On Tutorial ๐Ÿ› ๏ธ๐Ÿ“ˆ

Letโ€™s walk through the basic workflow of creating a dashboard in Power BI using a sample Excel dataset (e.g. sales, HR, or marketing data).

1๏ธโƒฃ Open Power BI Desktop
Launch the tool and start a Blank Report.

2๏ธโƒฃ Load Your Data
โ€ข Click Home > Get Data > Excel
โ€ข Select your Excel file and choose the sheet
โ€ข Click Load

Now your data appears in the Fields pane.

3๏ธโƒฃ Explore the Data
โ€ข Click Data View to inspect rows and columns
โ€ข Check for missing values, types (text, number, date)

4๏ธโƒฃ Create Visuals (Report View)
Try adding these:

โ€ข Bar Chart:
Drag Region to Axis, Sales to Values
โ†’ Shows sales by region

โ€ข Pie Chart:
Drag Category to Legend, Revenue to Values
โ†’ Shows revenue share by category

โ€ข Card:
Drag Profit to a card visual
โ†’ Displays total profit

โ€ข Table:
Drag multiple fields to see raw data in a table

5๏ธโƒฃ Add Filters and Slicers
โ€ข Insert a Slicer โ†’ Drag Month
โ€ข Now you can filter data month-wise with a click

6๏ธโƒฃ Format the Dashboard
โ€ข Rename visuals
โ€ข Adjust colors and fonts
โ€ข Use Gridlines to align elements

7๏ธโƒฃ Save Share
โ€ข Save as .pbix file
โ€ข Publish to Power BI service (requires Microsoft account)
โ†’ Share via link or embed in website

๐Ÿง  Practice Task:
Build a basic Sales Dashboard showing:
โ€ข Total Sales
โ€ข Sales by Region
โ€ข Revenue by Product
โ€ข Monthly Trend (line chart)

๐Ÿ’ฌ Tap โค๏ธ for more
โค10