โ
Exploratory Data Analysis (EDA) ๐๐
EDA is the first and most important step in any data analytics or machine learning project. It helps you understand the data, spot patterns, detect outliers, and prepare for modeling.
1๏ธโฃ Load and Understand the Data
Goal: Get the structure (rows, columns), data types, and sample values.
2๏ธโฃ Summary and Info
Goal:
โข See null values
โข Understand distributions (mean, std, min, max)
3๏ธโฃ Check for Missing Values
๐ Fix options:
โข
โข
4๏ธโฃ Unique Values Frequency Counts
Goal: Understand categorical features.
5๏ธโฃ Data Type Conversion (if needed)
6๏ธโฃ Detecting Duplicates Removing
7๏ธโฃ Univariate Analysis (1 Variable)
Goal: View distribution and detect outliers.
8๏ธโฃ Bivariate Analysis (2 Variables)
9๏ธโฃ Correlation Analysis
Goal: Identify relationships between numerical features.
๐ Grouped Aggregation
Goal: Segment data and compare.
1๏ธโฃ1๏ธโฃ Time Series Trends (If date present)
๐ง Key Questions to Ask During EDA:
โข Are there missing or duplicate values?
โข Which products or regions perform best?
โข Are there seasonal trends in sales?
โข Are there outliers or strange values?
โข Which variables are strongly correlated?
๐ฏ Goal of EDA:
โข Spot data quality issues
โข Understand feature relationships
โข Prepare for modeling or dashboarding
๐ฌ Tap โค๏ธ for more!
EDA is the first and most important step in any data analytics or machine learning project. It helps you understand the data, spot patterns, detect outliers, and prepare for modeling.
1๏ธโฃ Load and Understand the Data
import pandas as pd
df = pd.read_csv("sales_data.csv")
print(df.head())
print(df.shape)
Goal: Get the structure (rows, columns), data types, and sample values.
2๏ธโฃ Summary and Info
df.info()
df.describe()
Goal:
โข See null values
โข Understand distributions (mean, std, min, max)
3๏ธโฃ Check for Missing Values
df.isnull().sum()
๐ Fix options:
โข
df.fillna(0) โ Fill missing valuesโข
df.dropna() โ Remove rows with nulls4๏ธโฃ Unique Values Frequency Counts
df['Region'].value_counts()
df['Product'].unique()
Goal: Understand categorical features.
5๏ธโฃ Data Type Conversion (if needed)
df['Date'] = pd.to_datetime(df['Date'])
df['Amount'] = df['Amount'].astype(float)
6๏ธโฃ Detecting Duplicates Removing
df.duplicated().sum()
df.drop_duplicates(inplace=True)
7๏ธโฃ Univariate Analysis (1 Variable)
import seaborn as sns
import matplotlib.pyplot as plt
sns.histplot(df['Sales'])
sns.boxplot(y=df['Profit'])
plt.show()
Goal: View distribution and detect outliers.
8๏ธโฃ Bivariate Analysis (2 Variables)
sns.scatterplot(x='Sales', y='Profit', data=df)
sns.boxplot(x='Region', y='Sales', data=df)
9๏ธโฃ Correlation Analysis
sns.heatmap(df.corr(numeric_only=True), annot=True)
Goal: Identify relationships between numerical features.
๐ Grouped Aggregation
df.groupby('Region')['Revenue'].sum()
df.groupby(['Region', 'Category'])['Sales'].mean()
Goal: Segment data and compare.
1๏ธโฃ1๏ธโฃ Time Series Trends (If date present)
df.set_index('Date')['Sales'].resample('M').sum().plot()
plt.title("Monthly Sales Trend")
๐ง Key Questions to Ask During EDA:
โข Are there missing or duplicate values?
โข Which products or regions perform best?
โข Are there seasonal trends in sales?
โข Are there outliers or strange values?
โข Which variables are strongly correlated?
๐ฏ Goal of EDA:
โข Spot data quality issues
โข Understand feature relationships
โข Prepare for modeling or dashboarding
๐ฌ Tap โค๏ธ for more!
โค12๐6
โ
SQL Functions Interview Questions with Answers ๐ฏ๐
1๏ธโฃ Q: What is the difference between COUNT(*) and COUNT(column_name)?
A:
-
-
2๏ธโฃ Q: When would you use GROUP BY with aggregate functions?
A:
Use GROUP BY when you want to apply aggregate functions per group (e.g., department-wise total salary):
3๏ธโฃ Q: What does the COALESCE() function do?
A:
COALESCE() returns the first non-null value from the list of arguments.
Example:
4๏ธโฃ Q: How does the CASE statement work in SQL?
A:
CASE is used for conditional logic inside queries.
Example:
5๏ธโฃ Q: Whatโs the use of SUBSTRING() function?
A:
It extracts a part of a string.
Example:
6๏ธโฃ Q: Whatโs the output of LENGTH('SQL')?
A:
It returns the length of the string: 3
7๏ธโฃ Q: How do you find the number of days between two dates?
A:
Use
Example:
8๏ธโฃ Q: What does ROUND() do in SQL?
A:
It rounds a number to the specified decimal places.
Example:
๐ก Pro Tip: Always mention real use cases when answering โ it shows practical understanding.
๐ฌ Tap โค๏ธ for more!
1๏ธโฃ Q: What is the difference between COUNT(*) and COUNT(column_name)?
A:
-
COUNT(*) counts all rows, including those with NULLs. -
COUNT(column_name) counts only rows where the column is NOT NULL. 2๏ธโฃ Q: When would you use GROUP BY with aggregate functions?
A:
Use GROUP BY when you want to apply aggregate functions per group (e.g., department-wise total salary):
SELECT department, SUM(salary) FROM employees GROUP BY department;
3๏ธโฃ Q: What does the COALESCE() function do?
A:
COALESCE() returns the first non-null value from the list of arguments.
Example:
SELECT COALESCE(phone, 'N/A') FROM users;
4๏ธโฃ Q: How does the CASE statement work in SQL?
A:
CASE is used for conditional logic inside queries.
Example:
SELECT name,
CASE
WHEN score >= 90 THEN 'A'
WHEN score >= 75 THEN 'B'
ELSE 'C'
END AS grade
FROM students;
5๏ธโฃ Q: Whatโs the use of SUBSTRING() function?
A:
It extracts a part of a string.
Example:
SELECT SUBSTRING('DataScience', 1, 4); -- Output: Data6๏ธโฃ Q: Whatโs the output of LENGTH('SQL')?
A:
It returns the length of the string: 3
7๏ธโฃ Q: How do you find the number of days between two dates?
A:
Use
DATEDIFF(end_date, start_date) Example:
SELECT DATEDIFF('2026-01-10', '2026-01-05'); -- Output: 58๏ธโฃ Q: What does ROUND() do in SQL?
A:
It rounds a number to the specified decimal places.
Example:
SELECT ROUND(3.456, 2); -- Output: 3.46
๐ก Pro Tip: Always mention real use cases when answering โ it shows practical understanding.
๐ฌ Tap โค๏ธ for more!
โค23
1๏ธโฃ What does the following code print?
print("Hello, Python")
print("Hello, Python")
Anonymous Quiz
14%
A. Hello Python
73%
B. Hello, Python
9%
C. "Hello, Python"
4%
D. Syntax Error
โค12
2๏ธโฃ Which of these is a valid variable name in Python?
Anonymous Quiz
10%
A. 1name
80%
B. name_1
4%
C. name-1
6%
D. @name
โค5
3๏ธโฃ What is the output of this code?
print(10 // 3)
print(10 // 3)
Anonymous Quiz
50%
A. 3.33
38%
B. 3
3%
C. 4
9%
D. 3.0
โค8๐ฅ2
โค7
What will this code output?*
print("Hi " * 2)
print("Hi " * 2)
Anonymous Quiz
40%
A. HiHi
10%
B. Hi 2
42%
C. Hi Hi
9%
D. Error
โค6
What is the correct way to check the type of a variable x?
Anonymous Quiz
21%
A. typeof(x)
13%
B. checktype(x)
56%
C. type(x)
10%
D. x.type()
โค7๐4๐2
โ
BI Tools Part-1: Introduction to Power BI Tableau ๐๐ฅ๏ธ
If you want to turn raw data into powerful stories and dashboards, Business Intelligence (BI) tools are a must. Power BI and Tableau are two of the most in-demand tools in analytics today.
1๏ธโฃ What is Power BI?
Power BI is a business analytics tool by Microsoft that helps visualize data and share insights across your organization.
โข Drag-and-drop interface
โข Seamless with Excel Azure
โข Used widely in enterprises
2๏ธโฃ What is Tableau?
Tableau is a powerful visualization platform known for interactive dashboards and beautiful charts.
โข User-friendly
โข Real-time analytics
โข Great for storytelling with data
3๏ธโฃ Why learn Power BI or Tableau?
โข Demand in job market is very high
โข Helps you convert raw data โ meaningful insights
โข Often used by data analysts, business analysts, decision-makers
4๏ธโฃ Basic Features You'll Learn:
โข Connecting data sources (Excel, SQL, CSV, etc.)
โข Creating bar, line, pie, map visuals
โข Using filters, slicers, and drill-through
โข Building dashboards reports
โข Publishing and sharing with teams
5๏ธโฃ Real-World Use Cases:
โข Sales dashboard tracking targets
โข HR dashboard showing attrition and hiring trends
โข Marketing funnel analysis
โข Financial KPI tracking
๐ง Tools to Install:
โข Power BI Desktop (Free for Windows)
โข Tableau Public (Free version for practice)
๐ง Practice Task:
โข Download a sample Excel dataset (e.g. sales data)
โข Load it into Power BI or Tableau
โข Try building 3 simple visuals: bar chart, pie chart, and table
Power BI: https://whatsapp.com/channel/0029Vai1xKf1dAvuk6s1v22c
Tableau: https://whatsapp.com/channel/0029VasYW1V5kg6z4EHOHG1t
๐ฌ Tap โค๏ธ for more!
If you want to turn raw data into powerful stories and dashboards, Business Intelligence (BI) tools are a must. Power BI and Tableau are two of the most in-demand tools in analytics today.
1๏ธโฃ What is Power BI?
Power BI is a business analytics tool by Microsoft that helps visualize data and share insights across your organization.
โข Drag-and-drop interface
โข Seamless with Excel Azure
โข Used widely in enterprises
2๏ธโฃ What is Tableau?
Tableau is a powerful visualization platform known for interactive dashboards and beautiful charts.
โข User-friendly
โข Real-time analytics
โข Great for storytelling with data
3๏ธโฃ Why learn Power BI or Tableau?
โข Demand in job market is very high
โข Helps you convert raw data โ meaningful insights
โข Often used by data analysts, business analysts, decision-makers
4๏ธโฃ Basic Features You'll Learn:
โข Connecting data sources (Excel, SQL, CSV, etc.)
โข Creating bar, line, pie, map visuals
โข Using filters, slicers, and drill-through
โข Building dashboards reports
โข Publishing and sharing with teams
5๏ธโฃ Real-World Use Cases:
โข Sales dashboard tracking targets
โข HR dashboard showing attrition and hiring trends
โข Marketing funnel analysis
โข Financial KPI tracking
๐ง Tools to Install:
โข Power BI Desktop (Free for Windows)
โข Tableau Public (Free version for practice)
๐ง Practice Task:
โข Download a sample Excel dataset (e.g. sales data)
โข Load it into Power BI or Tableau
โข Try building 3 simple visuals: bar chart, pie chart, and table
Power BI: https://whatsapp.com/channel/0029Vai1xKf1dAvuk6s1v22c
Tableau: https://whatsapp.com/channel/0029VasYW1V5kg6z4EHOHG1t
๐ฌ Tap โค๏ธ for more!
โค14๐4
โ
BI Tools Part-2: Power BI Hands-On Tutorial ๐ ๏ธ๐
Letโs walk through the basic workflow of creating a dashboard in Power BI using a sample Excel dataset (e.g. sales, HR, or marketing data).
1๏ธโฃ Open Power BI Desktop
Launch the tool and start a Blank Report.
2๏ธโฃ Load Your Data
โข Click Home > Get Data > Excel
โข Select your Excel file and choose the sheet
โข Click Load
Now your data appears in the Fields pane.
3๏ธโฃ Explore the Data
โข Click Data View to inspect rows and columns
โข Check for missing values, types (text, number, date)
4๏ธโฃ Create Visuals (Report View)
Try adding these:
โข Bar Chart:
Drag Region to Axis, Sales to Values
โ Shows sales by region
โข Pie Chart:
Drag Category to Legend, Revenue to Values
โ Shows revenue share by category
โข Card:
Drag Profit to a card visual
โ Displays total profit
โข Table:
Drag multiple fields to see raw data in a table
5๏ธโฃ Add Filters and Slicers
โข Insert a Slicer โ Drag Month
โข Now you can filter data month-wise with a click
6๏ธโฃ Format the Dashboard
โข Rename visuals
โข Adjust colors and fonts
โข Use Gridlines to align elements
7๏ธโฃ Save Share
โข Save as .pbix file
โข Publish to Power BI service (requires Microsoft account)
โ Share via link or embed in website
๐ง Practice Task:
Build a basic Sales Dashboard showing:
โข Total Sales
โข Sales by Region
โข Revenue by Product
โข Monthly Trend (line chart)
๐ฌ Tap โค๏ธ for more
Letโs walk through the basic workflow of creating a dashboard in Power BI using a sample Excel dataset (e.g. sales, HR, or marketing data).
1๏ธโฃ Open Power BI Desktop
Launch the tool and start a Blank Report.
2๏ธโฃ Load Your Data
โข Click Home > Get Data > Excel
โข Select your Excel file and choose the sheet
โข Click Load
Now your data appears in the Fields pane.
3๏ธโฃ Explore the Data
โข Click Data View to inspect rows and columns
โข Check for missing values, types (text, number, date)
4๏ธโฃ Create Visuals (Report View)
Try adding these:
โข Bar Chart:
Drag Region to Axis, Sales to Values
โ Shows sales by region
โข Pie Chart:
Drag Category to Legend, Revenue to Values
โ Shows revenue share by category
โข Card:
Drag Profit to a card visual
โ Displays total profit
โข Table:
Drag multiple fields to see raw data in a table
5๏ธโฃ Add Filters and Slicers
โข Insert a Slicer โ Drag Month
โข Now you can filter data month-wise with a click
6๏ธโฃ Format the Dashboard
โข Rename visuals
โข Adjust colors and fonts
โข Use Gridlines to align elements
7๏ธโฃ Save Share
โข Save as .pbix file
โข Publish to Power BI service (requires Microsoft account)
โ Share via link or embed in website
๐ง Practice Task:
Build a basic Sales Dashboard showing:
โข Total Sales
โข Sales by Region
โข Revenue by Product
โข Monthly Trend (line chart)
๐ฌ Tap โค๏ธ for more
โค18
โ
Data Analytics Real-World Use Cases ๐๐
Data analytics turns raw data into actionable insights. Here's how it creates value across industries:
1๏ธโฃ Sales Marketing
Use Case: Customer Segmentation
โข Analyze purchase history, demographics, and behavior
โข Identify high-value vs low-value customers
โข Personalize marketing campaigns
Tools: SQL, Excel, Python, Tableau
2๏ธโฃ Human Resources (HR Analytics)
Use Case: Employee Retention
โข Track employee satisfaction, performance, exit trends
โข Predict attrition risk
โข Optimize hiring decisions
Tools: Excel, Power BI, Python (Pandas)
3๏ธโฃ E-commerce
Use Case: Product Recommendation Engine
โข Use clickstream and purchase data
โข Analyze buying patterns
โข Improve cross-selling and upselling
Tools: Python (NumPy, Pandas), Machine Learning
4๏ธโฃ Finance Banking
Use Case: Fraud Detection
โข Analyze unusual patterns in transactions
โข Flag high-risk activity in real-time
โข Reduce financial losses
Tools: SQL, Python, ML models
5๏ธโฃ Healthcare
Use Case: Predictive Patient Care
โข Analyze patient history and lab results
โข Identify early signs of disease
โข Recommend preventive measures
Tools: Python, Jupyter, visualization libraries
6๏ธโฃ Supply Chain
Use Case: Inventory Optimization
โข Forecast product demand
โข Reduce overstock/stockouts
โข Improve delivery times
Tools: Excel, Python, Power BI
7๏ธโฃ Education
Use Case: Student Performance Analysis
โข Identify struggling students
โข Evaluate teaching effectiveness
โข Plan interventions
Tools: Google Sheets, Tableau, SQL
๐ง Practice Idea:
Choose one domain โ Find a dataset โ Ask a real question โ Clean โ Analyze โ Visualize โ Present
๐ฌ Tap โค๏ธ for more
Data analytics turns raw data into actionable insights. Here's how it creates value across industries:
1๏ธโฃ Sales Marketing
Use Case: Customer Segmentation
โข Analyze purchase history, demographics, and behavior
โข Identify high-value vs low-value customers
โข Personalize marketing campaigns
Tools: SQL, Excel, Python, Tableau
2๏ธโฃ Human Resources (HR Analytics)
Use Case: Employee Retention
โข Track employee satisfaction, performance, exit trends
โข Predict attrition risk
โข Optimize hiring decisions
Tools: Excel, Power BI, Python (Pandas)
3๏ธโฃ E-commerce
Use Case: Product Recommendation Engine
โข Use clickstream and purchase data
โข Analyze buying patterns
โข Improve cross-selling and upselling
Tools: Python (NumPy, Pandas), Machine Learning
4๏ธโฃ Finance Banking
Use Case: Fraud Detection
โข Analyze unusual patterns in transactions
โข Flag high-risk activity in real-time
โข Reduce financial losses
Tools: SQL, Python, ML models
5๏ธโฃ Healthcare
Use Case: Predictive Patient Care
โข Analyze patient history and lab results
โข Identify early signs of disease
โข Recommend preventive measures
Tools: Python, Jupyter, visualization libraries
6๏ธโฃ Supply Chain
Use Case: Inventory Optimization
โข Forecast product demand
โข Reduce overstock/stockouts
โข Improve delivery times
Tools: Excel, Python, Power BI
7๏ธโฃ Education
Use Case: Student Performance Analysis
โข Identify struggling students
โข Evaluate teaching effectiveness
โข Plan interventions
Tools: Google Sheets, Tableau, SQL
๐ง Practice Idea:
Choose one domain โ Find a dataset โ Ask a real question โ Clean โ Analyze โ Visualize โ Present
๐ฌ Tap โค๏ธ for more
โค13๐5๐1
โ
Python Control Flow Part 1: if, elif, else ๐ง ๐ป
What is Control Flow?
๐ Your code makes decisions
๐ Runs only when conditions are met
โข Each condition is True or False
โข Python checks from top to bottom
๐น Basic if statement
โถ๏ธ Checks if age is 18 or more. Prints "You are eligible to vote"
๐น if-else example
โถ๏ธ Age is 16, so it prints "Not eligible"
๐น elif for multiple conditions
โถ๏ธ Marks = 72, so it matches >= 60 and prints "Grade C"
๐น Comparison Operators
โถ๏ธ Since 10 โ 20, it prints "Values are different"
๐น Logical Operators
โถ๏ธ Both conditions are True โ prints "Entry allowed"
โ ๏ธ Common Mistakes:
โข Using
โข Bad indentation
โข Comparing incompatible data types
๐ Mini Project โ Age Category Checker
โถ๏ธ Takes age as input and prints the category
๐ Practice Tasks:
1. Check if a number is even or odd
2. Check if number is +ve, -ve, or 0
3. Print the larger of two numbers
4. Check if a year is leap year
โ Practice Task Solutions โ Try it yourself first ๐
1๏ธโฃ Check if a number is even or odd
โถ๏ธ
2๏ธโฃ Check if number is positive, negative, or zero
โถ๏ธ Uses > and < to check sign of number.
3๏ธโฃ Print the larger of two numbers
โถ๏ธ Compares a and b and prints the larger one.
4๏ธโฃ Check if a year is leap year
โถ๏ธ Follows leap year rules:
- Divisible by 4 โ
- But not divisible by 100 โ
- Unless also divisible by 400 โ
๐ Daily Rule:
โ Code 60 mins
โ Run every example
โ Change inputs and observe output
๐ฌ Tap โค๏ธ if this helped you!
Python Programming Roadmap: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L/2312
What is Control Flow?
๐ Your code makes decisions
๐ Runs only when conditions are met
โข Each condition is True or False
โข Python checks from top to bottom
๐น Basic if statement
age = 20
if age >= 18:
print("You are eligible to vote")
โถ๏ธ Checks if age is 18 or more. Prints "You are eligible to vote"
๐น if-else example
age = 16
if age >= 18:
print("Eligible to vote")
else:
print("Not eligible")
โถ๏ธ Age is 16, so it prints "Not eligible"
๐น elif for multiple conditions
marks = 72
if marks >= 90:
print("Grade A")
elif marks >= 75:
print("Grade B")
elif marks >= 60:
print("Grade C")
else:
print("Fail")
โถ๏ธ Marks = 72, so it matches >= 60 and prints "Grade C"
๐น Comparison Operators
a = 10
b = 20
if a != b:
print("Values are different")
โถ๏ธ Since 10 โ 20, it prints "Values are different"
๐น Logical Operators
age = 25
has_id = True
if age >= 18 and has_id:
print("Entry allowed")
โถ๏ธ Both conditions are True โ prints "Entry allowed"
โ ๏ธ Common Mistakes:
โข Using
= instead of == โข Bad indentation
โข Comparing incompatible data types
๐ Mini Project โ Age Category Checker
age = int(input("Enter age: "))
if age < 13:
print("Child")
elif age <= 19:
print("Teen")
else:
print("Adult")
โถ๏ธ Takes age as input and prints the category
๐ Practice Tasks:
1. Check if a number is even or odd
2. Check if number is +ve, -ve, or 0
3. Print the larger of two numbers
4. Check if a year is leap year
โ Practice Task Solutions โ Try it yourself first ๐
1๏ธโฃ Check if a number is even or odd
num = int(input("Enter a number: "))
if num % 2 == 0:
print("Even number")
else:
print("Odd number")
โถ๏ธ
% gives remainder. If remainder is 0, it's even.2๏ธโฃ Check if number is positive, negative, or zero
num = float(input("Enter a number: "))
if num > 0:
print("Positive number")
elif num < 0:
print("Negative number")
else:
print("Zero")
โถ๏ธ Uses > and < to check sign of number.
3๏ธโฃ Print the larger of two numbers
a = int(input("Enter first number: "))
b = int(input("Enter second number: "))
if a > b:
print("Larger number is:", a)
elif b > a:
print("Larger number is:", b)
else:
print("Both are equal")
โถ๏ธ Compares a and b and prints the larger one.
4๏ธโฃ Check if a year is leap year
year = int(input("Enter a year: "))
if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0):
print("Leap year")
else:
print("Not a leap year")
โถ๏ธ Follows leap year rules:
- Divisible by 4 โ
- But not divisible by 100 โ
- Unless also divisible by 400 โ
๐ Daily Rule:
โ Code 60 mins
โ Run every example
โ Change inputs and observe output
๐ฌ Tap โค๏ธ if this helped you!
Python Programming Roadmap: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L/2312
โค11
โ
SQL for Data Analytics ๐๐ง
Mastering SQL is essential for analyzing, filtering, and summarizing large datasets. Here's a quick guide with real-world use cases:
1๏ธโฃ SELECT, WHERE, AND, OR
Filter specific rows from your data.
2๏ธโฃ ORDER BY & LIMIT
Sort and limit your results.
โถ๏ธ Top 5 highest salaries
3๏ธโฃ GROUP BY + Aggregates (SUM, AVG, COUNT)
Summarize data by groups.
4๏ธโฃ HAVING
Filter grouped data (use after GROUP BY).
5๏ธโฃ JOINs
Combine data from multiple tables.
6๏ธโฃ CASE Statements
Create conditional logic inside queries.
7๏ธโฃ DATE Functions
Analyze trends over time.
8๏ธโฃ Subqueries
Nested queries for advanced filters.
9๏ธโฃ Window Functions (Advanced)
โถ๏ธ Rank employees within each department
๐ก Used In:
โข Marketing: campaign ROI, customer segments
โข Sales: top performers, revenue by region
โข HR: attrition trends, headcount by dept
โข Finance: profit margins, cost control
SQL For Data Analytics: https://whatsapp.com/channel/0029Vb6hJmM9hXFCWNtQX944
๐ฌ Tap โค๏ธ for more
Mastering SQL is essential for analyzing, filtering, and summarizing large datasets. Here's a quick guide with real-world use cases:
1๏ธโฃ SELECT, WHERE, AND, OR
Filter specific rows from your data.
SELECT name, age
FROM employees
WHERE department = 'Sales' AND age > 30;
2๏ธโฃ ORDER BY & LIMIT
Sort and limit your results.
SELECT name, salary
FROM employees
ORDER BY salary DESC
LIMIT 5;
โถ๏ธ Top 5 highest salaries
3๏ธโฃ GROUP BY + Aggregates (SUM, AVG, COUNT)
Summarize data by groups.
SELECT department, AVG(salary) AS avg_salary
FROM employees
GROUP BY department;
4๏ธโฃ HAVING
Filter grouped data (use after GROUP BY).
SELECT department, COUNT(*) AS emp_count
FROM employees
GROUP BY department
HAVING emp_count > 10;
5๏ธโฃ JOINs
Combine data from multiple tables.
SELECT e.name, d.name AS dept_name
FROM employees e
JOIN departments d ON e.dept_id = d.id;
6๏ธโฃ CASE Statements
Create conditional logic inside queries.
SELECT name,
CASE
WHEN salary > 70000 THEN 'High'
WHEN salary > 40000 THEN 'Medium'
ELSE 'Low'
END AS salary_band
FROM employees;
7๏ธโฃ DATE Functions
Analyze trends over time.
SELECT MONTH(join_date) AS join_month, COUNT(*)
FROM employees
GROUP BY join_month;
8๏ธโฃ Subqueries
Nested queries for advanced filters.
SELECT name, salary
FROM employees
WHERE salary > (SELECT AVG(salary) FROM employees);
9๏ธโฃ Window Functions (Advanced)
SELECT name, department, salary,
RANK() OVER(PARTITION BY department ORDER BY salary DESC) AS dept_rank
FROM employees;
โถ๏ธ Rank employees within each department
๐ก Used In:
โข Marketing: campaign ROI, customer segments
โข Sales: top performers, revenue by region
โข HR: attrition trends, headcount by dept
โข Finance: profit margins, cost control
SQL For Data Analytics: https://whatsapp.com/channel/0029Vb6hJmM9hXFCWNtQX944
๐ฌ Tap โค๏ธ for more
โค10
๐๐ฅ๐๐ ๐ข๐ป๐น๐ถ๐ป๐ฒ ๐ ๐ฎ๐๐๐ฒ๐ฟ๐ฐ๐น๐ฎ๐๐ ๐ข๐ป ๐๐ฎ๐๐ฒ๐๐ ๐ง๐ฒ๐ฐ๐ต๐ป๐ผ๐น๐ผ๐ด๐ถ๐ฒ๐๐
- Data Science
- AI/ML
- Data Analytics
- UI/UX
- Full-stack Development
Get Job-Ready Guidance in Your Tech Journey
๐ฅ๐ฒ๐ด๐ถ๐๐๐ฒ๐ฟ ๐๐ผ๐ฟ ๐๐ฅ๐๐๐:-
https://pdlink.in/4sw5Ev8
Date :- 11th January 2026
- Data Science
- AI/ML
- Data Analytics
- UI/UX
- Full-stack Development
Get Job-Ready Guidance in Your Tech Journey
๐ฅ๐ฒ๐ด๐ถ๐๐๐ฒ๐ฟ ๐๐ผ๐ฟ ๐๐ฅ๐๐๐:-
https://pdlink.in/4sw5Ev8
Date :- 11th January 2026
โค3
โ
Data Analyst Resume Tips ๐งพ๐
Your resume should showcase skills + results + tools. Hereโs what to focus on:
1๏ธโฃ Clear Career Summary
โข 2โ3 lines about who you are
โข Mention tools (Excel, SQL, Power BI, Python)
โข Example: โData analyst with 2 yearsโ experience in Excel, SQL, and Power BI. Specializes in sales insights and automation.โ
2๏ธโฃ Skills Section
โข Technical: SQL, Excel, Power BI, Python, Tableau
โข Data: Cleaning, visualization, dashboards, insights
โข Soft: Problem-solving, communication, attention to detail
3๏ธโฃ Projects or Experience
โข Real or personal projects
โข Use the STAR format: Situation โ Task โ Action โ Result
โข Show impact: โCreated dashboard that reduced reporting time by 40%.โ
4๏ธโฃ Tools and Certifications
โข Mention Udemy/Google/Coursera certificates (optional)
โข Highlight tools used in each project
5๏ธโฃ Education
โข Degree (if relevant)
โข Online courses with completion date
๐ง Tips:
โข Keep it 1 page if youโre a fresher
โข Use action verbs: Analyzed, Automated, Built, Designed
โข Use numbers to show results: +%, time saved, etc.
๐ Practice Task:
Write one resume bullet like:
โAnalyzed customer data using SQL and Power BI to find trends that increased sales by 12%.โ
Double Tap โฅ๏ธ For More
Your resume should showcase skills + results + tools. Hereโs what to focus on:
1๏ธโฃ Clear Career Summary
โข 2โ3 lines about who you are
โข Mention tools (Excel, SQL, Power BI, Python)
โข Example: โData analyst with 2 yearsโ experience in Excel, SQL, and Power BI. Specializes in sales insights and automation.โ
2๏ธโฃ Skills Section
โข Technical: SQL, Excel, Power BI, Python, Tableau
โข Data: Cleaning, visualization, dashboards, insights
โข Soft: Problem-solving, communication, attention to detail
3๏ธโฃ Projects or Experience
โข Real or personal projects
โข Use the STAR format: Situation โ Task โ Action โ Result
โข Show impact: โCreated dashboard that reduced reporting time by 40%.โ
4๏ธโฃ Tools and Certifications
โข Mention Udemy/Google/Coursera certificates (optional)
โข Highlight tools used in each project
5๏ธโฃ Education
โข Degree (if relevant)
โข Online courses with completion date
๐ง Tips:
โข Keep it 1 page if youโre a fresher
โข Use action verbs: Analyzed, Automated, Built, Designed
โข Use numbers to show results: +%, time saved, etc.
๐ Practice Task:
Write one resume bullet like:
โAnalyzed customer data using SQL and Power BI to find trends that increased sales by 12%.โ
Double Tap โฅ๏ธ For More
โค17
โ
GitHub Profile Tips for Data Analysts ๐๐ผ
Your GitHub is more than code โ itโs your digital resume. Here's how to make it stand out:
1๏ธโฃ Clean README (Profile)
โข Add your name, title & tools
โข Short about section
โข Include: skills, top projects, certificates, contact
โ Example:
โHi, Iโm Rahul โ a Data Analyst skilled in SQL, Python & Power BI.โ
2๏ธโฃ Pin Your Best Projects
โข Show 3โ6 strong repos
โข Add clear README for each project:
- What it does
- Tools used
- Screenshots or demo links
โ Bonus: Include real data or visuals
3๏ธโฃ Use Commits & Contributions
โข Contribute regularly
โข Avoid empty profiles
โ Daily commits > 1 big push once a month
4๏ธโฃ Upload Resume Projects
โข Excel dashboards
โข SQL queries
โข Python notebooks (Jupyter)
โข BI project links (Power BI/Tableau public)
5๏ธโฃ Add Descriptions & Tags
โข Use repo tags:
โข Write short project summary in repo description
๐ง Tips:
โข Push only clean, working code
โข Use folders, not messy files
โข Update your profile bio with your LinkedIn
๐ Practice Task:
Upload your latest project โ Write a README โ Pin it to your profile
๐ฌ Tap โค๏ธ for more!
Your GitHub is more than code โ itโs your digital resume. Here's how to make it stand out:
1๏ธโฃ Clean README (Profile)
โข Add your name, title & tools
โข Short about section
โข Include: skills, top projects, certificates, contact
โ Example:
โHi, Iโm Rahul โ a Data Analyst skilled in SQL, Python & Power BI.โ
2๏ธโฃ Pin Your Best Projects
โข Show 3โ6 strong repos
โข Add clear README for each project:
- What it does
- Tools used
- Screenshots or demo links
โ Bonus: Include real data or visuals
3๏ธโฃ Use Commits & Contributions
โข Contribute regularly
โข Avoid empty profiles
โ Daily commits > 1 big push once a month
4๏ธโฃ Upload Resume Projects
โข Excel dashboards
โข SQL queries
โข Python notebooks (Jupyter)
โข BI project links (Power BI/Tableau public)
5๏ธโฃ Add Descriptions & Tags
โข Use repo tags:
sql, python, EDA, dashboard โข Write short project summary in repo description
๐ง Tips:
โข Push only clean, working code
โข Use folders, not messy files
โข Update your profile bio with your LinkedIn
๐ Practice Task:
Upload your latest project โ Write a README โ Pin it to your profile
๐ฌ Tap โค๏ธ for more!
โค15
๐๐ถ๐ด๐ต ๐๐ฒ๐บ๐ฎ๐ป๐ฑ๐ถ๐ป๐ด ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐ ๐ช๐ถ๐๐ต ๐ฃ๐น๐ฎ๐ฐ๐ฒ๐บ๐ฒ๐ป๐ ๐๐๐๐ถ๐๐๐ฎ๐ป๐ฐ๐ฒ๐
Learn from IIT faculty and industry experts.
IIT Roorkee DS & AI Program :- https://pdlink.in/4qHVFkI
IIT Patna AI & ML :- https://pdlink.in/4pBNxkV
IIM Mumbai DM & Analytics :- https://pdlink.in/4jvuHdE
IIM Rohtak Product Management:- https://pdlink.in/4aMtk8i
IIT Roorkee Agentic Systems:- https://pdlink.in/4aTKgdc
Upskill in todayโs most in-demand tech domains and boost your career ๐
Learn from IIT faculty and industry experts.
IIT Roorkee DS & AI Program :- https://pdlink.in/4qHVFkI
IIT Patna AI & ML :- https://pdlink.in/4pBNxkV
IIM Mumbai DM & Analytics :- https://pdlink.in/4jvuHdE
IIM Rohtak Product Management:- https://pdlink.in/4aMtk8i
IIT Roorkee Agentic Systems:- https://pdlink.in/4aTKgdc
Upskill in todayโs most in-demand tech domains and boost your career ๐
โค5
โ
Data Analyst Mistakes Beginners Should Avoid โ ๏ธ๐
1๏ธโฃ Ignoring Data Cleaning
โข Jumping to charts too soon
โข Overlooking missing or incorrect data
โ Clean before you analyze โ always
2๏ธโฃ Not Practicing SQL Enough
โข Stuck on simple joins or filters
โข Canโt handle large datasets
โ Practice SQL daily โ it's your #1 tool
3๏ธโฃ Overusing Excel Only
โข Limited automation
โข Hard to scale with large data
โ Learn Python or SQL for bigger tasks
4๏ธโฃ No Real-World Projects
โข Watching tutorials only
โข Resume has no proof of skills
โ Analyze real datasets and publish your work
5๏ธโฃ Ignoring Business Context
โข Insights without meaning
โข Metrics without impact
โ Understand the why behind the data
6๏ธโฃ Weak Data Visualization Skills
โข Crowded charts
โข Wrong chart types
โ Use clean, simple, and clear visuals (Power BI, Tableau, etc.)
7๏ธโฃ Not Tracking Metrics Over Time
โข Only point-in-time analysis
โข No trends or comparisons
โ Use time-based metrics for better insight
8๏ธโฃ Avoiding Git & Version Control
โข No backup
โข Difficult collaboration
โ Learn Git to track and share your work
9๏ธโฃ No Communication Focus
โข Great analysis, poorly explained
โ Practice writing insights clearly & presenting dashboards
๐ Ignoring Data Privacy
โข Sharing raw data carelessly
โ Always anonymize and protect sensitive info
๐ก Master tools + think like a problem solver โ that's how analysts grow fast.
๐ฌ Tap โค๏ธ for more!
1๏ธโฃ Ignoring Data Cleaning
โข Jumping to charts too soon
โข Overlooking missing or incorrect data
โ Clean before you analyze โ always
2๏ธโฃ Not Practicing SQL Enough
โข Stuck on simple joins or filters
โข Canโt handle large datasets
โ Practice SQL daily โ it's your #1 tool
3๏ธโฃ Overusing Excel Only
โข Limited automation
โข Hard to scale with large data
โ Learn Python or SQL for bigger tasks
4๏ธโฃ No Real-World Projects
โข Watching tutorials only
โข Resume has no proof of skills
โ Analyze real datasets and publish your work
5๏ธโฃ Ignoring Business Context
โข Insights without meaning
โข Metrics without impact
โ Understand the why behind the data
6๏ธโฃ Weak Data Visualization Skills
โข Crowded charts
โข Wrong chart types
โ Use clean, simple, and clear visuals (Power BI, Tableau, etc.)
7๏ธโฃ Not Tracking Metrics Over Time
โข Only point-in-time analysis
โข No trends or comparisons
โ Use time-based metrics for better insight
8๏ธโฃ Avoiding Git & Version Control
โข No backup
โข Difficult collaboration
โ Learn Git to track and share your work
9๏ธโฃ No Communication Focus
โข Great analysis, poorly explained
โ Practice writing insights clearly & presenting dashboards
๐ Ignoring Data Privacy
โข Sharing raw data carelessly
โ Always anonymize and protect sensitive info
๐ก Master tools + think like a problem solver โ that's how analysts grow fast.
๐ฌ Tap โค๏ธ for more!
โค18
โ
Power BI Project Ideas for Data Analysts ๐๐ก
Real-world projects help you stand out in job applications and interviews.
1๏ธโฃ Sales Dashboard
โข Track revenue, profit, and sales by region/product
โข Add slicers for year, month, category
โข Source: Sample Superstore dataset
2๏ธโฃ HR Analytics Dashboard
โข Analyze employee attrition, performance, and satisfaction
โข KPIs: attrition rate, avg tenure, engagement score
โข Use Excel or mock HR dataset
3๏ธโฃ E-commerce Analysis
โข Show total orders, AOV (average order value), top-selling items
โข Use date filters, category breakdowns
โข Optional: add customer segmentation
4๏ธโฃ Financial Report
โข Monthly expenses vs income
โข Budget variance tracking
โข Charts for category-wise breakdown
5๏ธโฃ Healthcare Analytics
โข Hospital admissions, treatment outcomes, patient demographics
โข Drill-through: see patient-level detail by department
โข Public health datasets available online
6๏ธโฃ Marketing Campaign Tracker
โข Click-through rates, conversion rates, campaign ROI
โข Compare across channels (email, social, paid ads)
๐ง Bonus Tips:
โข Use DAX to create measures
โข Add tooltips and slicers
โข Make the design clean and professional
๐ Practice Task:
Choose one topic โ Get a dataset โ Build a dashboard โ Upload screenshots to GitHub
Power BI Resources: https://whatsapp.com/channel/0029Vai1xKf1dAvuk6s1v22c
๐ฌ Tap โค๏ธ for more!
Real-world projects help you stand out in job applications and interviews.
1๏ธโฃ Sales Dashboard
โข Track revenue, profit, and sales by region/product
โข Add slicers for year, month, category
โข Source: Sample Superstore dataset
2๏ธโฃ HR Analytics Dashboard
โข Analyze employee attrition, performance, and satisfaction
โข KPIs: attrition rate, avg tenure, engagement score
โข Use Excel or mock HR dataset
3๏ธโฃ E-commerce Analysis
โข Show total orders, AOV (average order value), top-selling items
โข Use date filters, category breakdowns
โข Optional: add customer segmentation
4๏ธโฃ Financial Report
โข Monthly expenses vs income
โข Budget variance tracking
โข Charts for category-wise breakdown
5๏ธโฃ Healthcare Analytics
โข Hospital admissions, treatment outcomes, patient demographics
โข Drill-through: see patient-level detail by department
โข Public health datasets available online
6๏ธโฃ Marketing Campaign Tracker
โข Click-through rates, conversion rates, campaign ROI
โข Compare across channels (email, social, paid ads)
๐ง Bonus Tips:
โข Use DAX to create measures
โข Add tooltips and slicers
โข Make the design clean and professional
๐ Practice Task:
Choose one topic โ Get a dataset โ Build a dashboard โ Upload screenshots to GitHub
Power BI Resources: https://whatsapp.com/channel/0029Vai1xKf1dAvuk6s1v22c
๐ฌ Tap โค๏ธ for more!
โค12
๐ ๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐ ๐๐ฅ๐๐ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐๐ผ๐๐ฟ๐๐ฒ๐
๐Upgrade your skills with industry-relevant Data Analytics training at ZERO cost
โ Beginner-friendly
โ Certificate on completion
โ High-demand skill in 2026
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/497MMLw
๐ 100% FREE โ Limited seats available!
๐Upgrade your skills with industry-relevant Data Analytics training at ZERO cost
โ Beginner-friendly
โ Certificate on completion
โ High-demand skill in 2026
๐๐ข๐ง๐ค ๐:-
https://pdlink.in/497MMLw
๐ 100% FREE โ Limited seats available!
โ
Essential Tools for Data Analytics ๐๐ ๏ธ
๐ฃ 1๏ธโฃ Excel / Google Sheets
โข Quick data entry & analysis
โข Pivot tables, charts, functions
โข Good for early-stage exploration
๐ป 2๏ธโฃ SQL (Structured Query Language)
โข Work with databases (MySQL, PostgreSQL, etc.)
โข Query, filter, join, and aggregate data
โข Must-know for data from large systems
๐ 3๏ธโฃ Python (with Libraries)
โข Pandas โ Data manipulation
โข NumPy โ Numerical analysis
โข Matplotlib / Seaborn โ Data visualization
โข OpenPyXL / xlrd โ Work with Excel files
๐ 4๏ธโฃ Power BI / Tableau
โข Create dashboards and visual reports
โข Drag-and-drop interface for non-coders
โข Ideal for business insights & presentations
๐ 5๏ธโฃ Google Data Studio
โข Free dashboard tool
โข Connects easily to Google Sheets, BigQuery
โข Great for real-time reporting
๐งช 6๏ธโฃ Jupyter Notebook
โข Interactive Python coding
โข Combine code, text, and visuals in one place
โข Perfect for storytelling with data
๐ ๏ธ 7๏ธโฃ R Programming (Optional)
โข Popular in statistical analysis
โข Strong in academic and research settings
โ๏ธ 8๏ธโฃ Cloud & Big Data Tools
โข Google BigQuery, Snowflake โ Large-scale analysis
โข Excel + SQL + Python still work as a base
๐ก Tip:
Start with Excel + SQL + Python (Pandas) โ Add BI tools for reporting.
๐ฌ Tap โค๏ธ for more!
๐ฃ 1๏ธโฃ Excel / Google Sheets
โข Quick data entry & analysis
โข Pivot tables, charts, functions
โข Good for early-stage exploration
๐ป 2๏ธโฃ SQL (Structured Query Language)
โข Work with databases (MySQL, PostgreSQL, etc.)
โข Query, filter, join, and aggregate data
โข Must-know for data from large systems
๐ 3๏ธโฃ Python (with Libraries)
โข Pandas โ Data manipulation
โข NumPy โ Numerical analysis
โข Matplotlib / Seaborn โ Data visualization
โข OpenPyXL / xlrd โ Work with Excel files
๐ 4๏ธโฃ Power BI / Tableau
โข Create dashboards and visual reports
โข Drag-and-drop interface for non-coders
โข Ideal for business insights & presentations
๐ 5๏ธโฃ Google Data Studio
โข Free dashboard tool
โข Connects easily to Google Sheets, BigQuery
โข Great for real-time reporting
๐งช 6๏ธโฃ Jupyter Notebook
โข Interactive Python coding
โข Combine code, text, and visuals in one place
โข Perfect for storytelling with data
๐ ๏ธ 7๏ธโฃ R Programming (Optional)
โข Popular in statistical analysis
โข Strong in academic and research settings
โ๏ธ 8๏ธโฃ Cloud & Big Data Tools
โข Google BigQuery, Snowflake โ Large-scale analysis
โข Excel + SQL + Python still work as a base
๐ก Tip:
Start with Excel + SQL + Python (Pandas) โ Add BI tools for reporting.
๐ฌ Tap โค๏ธ for more!
โค16