๐ Roadmap to Master Data Analytics in 50 Days! ๐๐
๐ Week 1โ2: Foundations
๐น Day 1โ3: What is Data Analytics? Tools overview
๐น Day 4โ7: Excel/Google Sheets (formulas, pivot tables, charts)
๐น Day 8โ10: SQL basics (SELECT, WHERE, JOIN, GROUP BY)
๐ Week 3โ4: Programming Data Handling
๐น Day 11โ15: Python for data (variables, loops, functions)
๐น Day 16โ20: Pandas, NumPy โ data cleaning, filtering, aggregation
๐ Week 5โ6: Visualization EDA
๐น Day 21โ25: Data visualization (Matplotlib, Seaborn)
๐น Day 26โ30: Exploratory Data Analysis โ ask questions, find trends
๐ Week 7โ8: BI Tools Advanced Skills
๐น Day 31โ35: Power BI / Tableau โ dashboards, filters, DAX
๐น Day 36โ40: Real-world case studies โ sales, HR, marketing data
๐ฏ Final Stretch: Projects Career Prep
๐น Day 41โ45: Capstone projects (end-to-end analysis + report)
๐น Day 46โ48: Resume, GitHub portfolio, LinkedIn optimization
๐น Day 49โ50: Mock interviews + SQL + Excel + scenario questions
๐ฌ Tap โค๏ธ for more!
๐ Week 1โ2: Foundations
๐น Day 1โ3: What is Data Analytics? Tools overview
๐น Day 4โ7: Excel/Google Sheets (formulas, pivot tables, charts)
๐น Day 8โ10: SQL basics (SELECT, WHERE, JOIN, GROUP BY)
๐ Week 3โ4: Programming Data Handling
๐น Day 11โ15: Python for data (variables, loops, functions)
๐น Day 16โ20: Pandas, NumPy โ data cleaning, filtering, aggregation
๐ Week 5โ6: Visualization EDA
๐น Day 21โ25: Data visualization (Matplotlib, Seaborn)
๐น Day 26โ30: Exploratory Data Analysis โ ask questions, find trends
๐ Week 7โ8: BI Tools Advanced Skills
๐น Day 31โ35: Power BI / Tableau โ dashboards, filters, DAX
๐น Day 36โ40: Real-world case studies โ sales, HR, marketing data
๐ฏ Final Stretch: Projects Career Prep
๐น Day 41โ45: Capstone projects (end-to-end analysis + report)
๐น Day 46โ48: Resume, GitHub portfolio, LinkedIn optimization
๐น Day 49โ50: Mock interviews + SQL + Excel + scenario questions
๐ฌ Tap โค๏ธ for more!
โค56๐2
โ
Data Analytics Foundations: Part-1 ๐๐ป
๐ What is Data Analytics?
Itโs the process of examining data to uncover insights, trends, and patterns to support decision-making.
๐ 4 Key Types of Data Analytics:
1๏ธโฃ Descriptive Analytics โ What happened?
โ Summarizes past data (e.g., sales reports)
2๏ธโฃ Diagnostic Analytics โ Why did it happen?
โ Identifies causes/trends behind outcomes
3๏ธโฃ Predictive Analytics โ What might happen next?
โ Uses models to forecast future outcomes
4๏ธโฃ Prescriptive Analytics โ What should we do?
โ Recommends actions based on data insights
๐งฐ Popular Tools in Data Analytics:
1. Excel / Google Sheets
โ Basics of data cleaning, formulas, pivot tables
2. SQL
โ Extract, join, and filter data from databases
3. Power BI / Tableau
โ Create dashboards and visual reports
4. Python (Pandas, NumPy, Matplotlib)
โ Automate tasks, analyze large datasets, visualize insights
5. R
โ Statistical analysis and data modeling
6. Google Data Studio
โ Simple, free tool for creating interactive dashboards
7. SAS / SPSS (for statistical work)
โ Used in healthcare, finance, and academic sectors
๐ Basic Skills Needed:
โข Data cleaning & preparation
โข Data visualization
โข Statistical analysis
โข Business understanding
โข Storytelling with data
๐ฌ Tap โค๏ธ for more!
๐ What is Data Analytics?
Itโs the process of examining data to uncover insights, trends, and patterns to support decision-making.
๐ 4 Key Types of Data Analytics:
1๏ธโฃ Descriptive Analytics โ What happened?
โ Summarizes past data (e.g., sales reports)
2๏ธโฃ Diagnostic Analytics โ Why did it happen?
โ Identifies causes/trends behind outcomes
3๏ธโฃ Predictive Analytics โ What might happen next?
โ Uses models to forecast future outcomes
4๏ธโฃ Prescriptive Analytics โ What should we do?
โ Recommends actions based on data insights
๐งฐ Popular Tools in Data Analytics:
1. Excel / Google Sheets
โ Basics of data cleaning, formulas, pivot tables
2. SQL
โ Extract, join, and filter data from databases
3. Power BI / Tableau
โ Create dashboards and visual reports
4. Python (Pandas, NumPy, Matplotlib)
โ Automate tasks, analyze large datasets, visualize insights
5. R
โ Statistical analysis and data modeling
6. Google Data Studio
โ Simple, free tool for creating interactive dashboards
7. SAS / SPSS (for statistical work)
โ Used in healthcare, finance, and academic sectors
๐ Basic Skills Needed:
โข Data cleaning & preparation
โข Data visualization
โข Statistical analysis
โข Business understanding
โข Storytelling with data
๐ฌ Tap โค๏ธ for more!
โค29๐5
โ
Data Analytics Foundations Part-2: Excel for Data Analytics ๐๐งฎ
Excel is one of the most accessible and powerful tools for data cleaning, analysis, and quick visualizationsโgreat for beginners and pros alike.
๐ Key Excel Features for Data Analytics:
1๏ธโฃ Formulas Functions
โข SUM(), AVERAGE(), COUNT() โ Basic calculations
โข IF(), VLOOKUP(), INDEX-MATCH() โ Conditional logic lookups
โข TEXT(), LEFT(), RIGHT() โ Data formatting
2๏ธโฃ Pivot Tables
โข Summarize large datasets in seconds
โข Drag drop to create custom reports
โข Group, filter, and sort easily
3๏ธโฃ Charts Visualizations
โข Column, Line, Pie, and Combo charts
โข Use sparklines for quick trends
โข Add slicers for interactivity
4๏ธโฃ Data Cleaning Tools
โข Remove duplicates
โข Text to columns
โข Flash Fill for auto-pattern detection
5๏ธโฃ Data Analysis ToolPak
โข Run regression, t-tests, and more (enable from Add-ins)
6๏ธโฃ Conditional Formatting
โข Highlight trends, outliers, and specific values visually
7๏ธโฃ Filters Sort
โข Organize and explore subsets of data quickly
๐ก Pro Tip: Use tables (Ctrl + T) to auto-expand formulas, enable filtering, and apply structured references.
Excel Resources: https://whatsapp.com/channel/0029VaifY548qIzv0u1AHz3i
๐ฌ Tap โค๏ธ for more!
Excel is one of the most accessible and powerful tools for data cleaning, analysis, and quick visualizationsโgreat for beginners and pros alike.
๐ Key Excel Features for Data Analytics:
1๏ธโฃ Formulas Functions
โข SUM(), AVERAGE(), COUNT() โ Basic calculations
โข IF(), VLOOKUP(), INDEX-MATCH() โ Conditional logic lookups
โข TEXT(), LEFT(), RIGHT() โ Data formatting
2๏ธโฃ Pivot Tables
โข Summarize large datasets in seconds
โข Drag drop to create custom reports
โข Group, filter, and sort easily
3๏ธโฃ Charts Visualizations
โข Column, Line, Pie, and Combo charts
โข Use sparklines for quick trends
โข Add slicers for interactivity
4๏ธโฃ Data Cleaning Tools
โข Remove duplicates
โข Text to columns
โข Flash Fill for auto-pattern detection
5๏ธโฃ Data Analysis ToolPak
โข Run regression, t-tests, and more (enable from Add-ins)
6๏ธโฃ Conditional Formatting
โข Highlight trends, outliers, and specific values visually
7๏ธโฃ Filters Sort
โข Organize and explore subsets of data quickly
๐ก Pro Tip: Use tables (Ctrl + T) to auto-expand formulas, enable filtering, and apply structured references.
Excel Resources: https://whatsapp.com/channel/0029VaifY548qIzv0u1AHz3i
๐ฌ Tap โค๏ธ for more!
โค19๐1
โ
Python Basics for Data Analytics ๐๐
Python is one of the most in-demand languages for data analytics due to its simplicity, flexibility, and powerful libraries. Here's a detailed guide to get you started with the basics:
๐ง 1. Variables Data Types
You use variables to store data.
Use Case: Store user details, flags, or calculated values.
๐ 2. Data Structures
โ List โ Ordered, changeable
โ Dictionary โ Key-value pairs
โ Tuple Set
Tuples = immutable, Sets = unordered unique
โ๏ธ 3. Conditional Statements
Use Case: Decision making in data pipelines
๐ 4. Loops
For loop
While loop
๐ฃ 5. Functions
Reusable blocks of logic
๐ 6. File Handling
Read/write data files
๐งฐ 7. Importing Libraries
Use Case: These libraries supercharge Python for analytics.
๐งน 8. Real Example: Analyzing Data
๐ฏ Why Learn Python for Data Analytics?
โ Easy to learn
โ Huge library support (Pandas, NumPy, Matplotlib)
โ Ideal for cleaning, exploring, and visualizing data
โ Works well with SQL, Excel, APIs, and BI tools
Python Programming: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
๐ฌ Double Tap โค๏ธ for more!
Python is one of the most in-demand languages for data analytics due to its simplicity, flexibility, and powerful libraries. Here's a detailed guide to get you started with the basics:
๐ง 1. Variables Data Types
You use variables to store data.
name = "Alice" # String
age = 28 # Integer
height = 5.6 # Float
is_active = True # Boolean
Use Case: Store user details, flags, or calculated values.
๐ 2. Data Structures
โ List โ Ordered, changeable
fruits = ['apple', 'banana', 'mango']
print(fruits[0]) # apple
โ Dictionary โ Key-value pairs
person = {'name': 'Alice', 'age': 28}
print(person['name']) # Alice โ Tuple Set
Tuples = immutable, Sets = unordered unique
โ๏ธ 3. Conditional Statements
score = 85
if score >= 90:
print("Excellent")
elif score >= 75:
print("Good")
else:
print("Needs improvement")
Use Case: Decision making in data pipelines
๐ 4. Loops
For loop
for fruit in fruits:
print(fruit)
While loop
count = 0
while count < 3:
print("Hello")
count += 1
๐ฃ 5. Functions
Reusable blocks of logic
def add(x, y):
return x + y
print(add(10, 5)) # 15
๐ 6. File Handling
Read/write data files
with open('data.txt', 'r') as file:
content = file.read()
print(content) ๐งฐ 7. Importing Libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
Use Case: These libraries supercharge Python for analytics.
๐งน 8. Real Example: Analyzing Data
import pandas as pd
df = pd.read_csv('sales.csv') # Load data
print(df.head()) # Preview
# Basic stats
print(df.describe())
print(df['Revenue'].mean())
๐ฏ Why Learn Python for Data Analytics?
โ Easy to learn
โ Huge library support (Pandas, NumPy, Matplotlib)
โ Ideal for cleaning, exploring, and visualizing data
โ Works well with SQL, Excel, APIs, and BI tools
Python Programming: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
๐ฌ Double Tap โค๏ธ for more!
โค22๐11
๐๐ฅ๐๐ ๐ข๐ป๐น๐ถ๐ป๐ฒ ๐ ๐ฎ๐๐๐ฒ๐ฟ๐ฐ๐น๐ฎ๐๐ ๐๐ ๐๐ป๐ฑ๐๐๐๐ฟ๐ ๐๐
๐ฝ๐ฒ๐ฟ๐๐ ๐
Roadmap to land your dream job in top product-based companies
๐๐ถ๐ด๐ต๐น๐ถ๐ด๐ต๐๐ฒ๐:-
- 90-Day Placement Plan
- Tech & Non-Tech Career Path
- Interview Preparation Tips
- Live Q&A
๐ฅ๐ฒ๐ด๐ถ๐๐๐ฒ๐ฟ ๐๐ผ๐ฟ ๐๐ฅ๐๐๐:-
https://pdlink.in/3Ltb3CE
Date & Time:- 06th January 2026 , 7PM
Roadmap to land your dream job in top product-based companies
๐๐ถ๐ด๐ต๐น๐ถ๐ด๐ต๐๐ฒ๐:-
- 90-Day Placement Plan
- Tech & Non-Tech Career Path
- Interview Preparation Tips
- Live Q&A
๐ฅ๐ฒ๐ด๐ถ๐๐๐ฒ๐ฟ ๐๐ผ๐ฟ ๐๐ฅ๐๐๐:-
https://pdlink.in/3Ltb3CE
Date & Time:- 06th January 2026 , 7PM
โค2
โ
Exploratory Data Analysis (EDA) ๐๐
EDA is the first and most important step in any data analytics or machine learning project. It helps you understand the data, spot patterns, detect outliers, and prepare for modeling.
1๏ธโฃ Load and Understand the Data
Goal: Get the structure (rows, columns), data types, and sample values.
2๏ธโฃ Summary and Info
Goal:
โข See null values
โข Understand distributions (mean, std, min, max)
3๏ธโฃ Check for Missing Values
๐ Fix options:
โข
โข
4๏ธโฃ Unique Values Frequency Counts
Goal: Understand categorical features.
5๏ธโฃ Data Type Conversion (if needed)
6๏ธโฃ Detecting Duplicates Removing
7๏ธโฃ Univariate Analysis (1 Variable)
Goal: View distribution and detect outliers.
8๏ธโฃ Bivariate Analysis (2 Variables)
9๏ธโฃ Correlation Analysis
Goal: Identify relationships between numerical features.
๐ Grouped Aggregation
Goal: Segment data and compare.
1๏ธโฃ1๏ธโฃ Time Series Trends (If date present)
๐ง Key Questions to Ask During EDA:
โข Are there missing or duplicate values?
โข Which products or regions perform best?
โข Are there seasonal trends in sales?
โข Are there outliers or strange values?
โข Which variables are strongly correlated?
๐ฏ Goal of EDA:
โข Spot data quality issues
โข Understand feature relationships
โข Prepare for modeling or dashboarding
๐ฌ Tap โค๏ธ for more!
EDA is the first and most important step in any data analytics or machine learning project. It helps you understand the data, spot patterns, detect outliers, and prepare for modeling.
1๏ธโฃ Load and Understand the Data
import pandas as pd
df = pd.read_csv("sales_data.csv")
print(df.head())
print(df.shape)
Goal: Get the structure (rows, columns), data types, and sample values.
2๏ธโฃ Summary and Info
df.info()
df.describe()
Goal:
โข See null values
โข Understand distributions (mean, std, min, max)
3๏ธโฃ Check for Missing Values
df.isnull().sum()
๐ Fix options:
โข
df.fillna(0) โ Fill missing valuesโข
df.dropna() โ Remove rows with nulls4๏ธโฃ Unique Values Frequency Counts
df['Region'].value_counts()
df['Product'].unique()
Goal: Understand categorical features.
5๏ธโฃ Data Type Conversion (if needed)
df['Date'] = pd.to_datetime(df['Date'])
df['Amount'] = df['Amount'].astype(float)
6๏ธโฃ Detecting Duplicates Removing
df.duplicated().sum()
df.drop_duplicates(inplace=True)
7๏ธโฃ Univariate Analysis (1 Variable)
import seaborn as sns
import matplotlib.pyplot as plt
sns.histplot(df['Sales'])
sns.boxplot(y=df['Profit'])
plt.show()
Goal: View distribution and detect outliers.
8๏ธโฃ Bivariate Analysis (2 Variables)
sns.scatterplot(x='Sales', y='Profit', data=df)
sns.boxplot(x='Region', y='Sales', data=df)
9๏ธโฃ Correlation Analysis
sns.heatmap(df.corr(numeric_only=True), annot=True)
Goal: Identify relationships between numerical features.
๐ Grouped Aggregation
df.groupby('Region')['Revenue'].sum()
df.groupby(['Region', 'Category'])['Sales'].mean()
Goal: Segment data and compare.
1๏ธโฃ1๏ธโฃ Time Series Trends (If date present)
df.set_index('Date')['Sales'].resample('M').sum().plot()
plt.title("Monthly Sales Trend")
๐ง Key Questions to Ask During EDA:
โข Are there missing or duplicate values?
โข Which products or regions perform best?
โข Are there seasonal trends in sales?
โข Are there outliers or strange values?
โข Which variables are strongly correlated?
๐ฏ Goal of EDA:
โข Spot data quality issues
โข Understand feature relationships
โข Prepare for modeling or dashboarding
๐ฌ Tap โค๏ธ for more!
โค12๐6
โ
SQL Functions Interview Questions with Answers ๐ฏ๐
1๏ธโฃ Q: What is the difference between COUNT(*) and COUNT(column_name)?
A:
-
-
2๏ธโฃ Q: When would you use GROUP BY with aggregate functions?
A:
Use GROUP BY when you want to apply aggregate functions per group (e.g., department-wise total salary):
3๏ธโฃ Q: What does the COALESCE() function do?
A:
COALESCE() returns the first non-null value from the list of arguments.
Example:
4๏ธโฃ Q: How does the CASE statement work in SQL?
A:
CASE is used for conditional logic inside queries.
Example:
5๏ธโฃ Q: Whatโs the use of SUBSTRING() function?
A:
It extracts a part of a string.
Example:
6๏ธโฃ Q: Whatโs the output of LENGTH('SQL')?
A:
It returns the length of the string: 3
7๏ธโฃ Q: How do you find the number of days between two dates?
A:
Use
Example:
8๏ธโฃ Q: What does ROUND() do in SQL?
A:
It rounds a number to the specified decimal places.
Example:
๐ก Pro Tip: Always mention real use cases when answering โ it shows practical understanding.
๐ฌ Tap โค๏ธ for more!
1๏ธโฃ Q: What is the difference between COUNT(*) and COUNT(column_name)?
A:
-
COUNT(*) counts all rows, including those with NULLs. -
COUNT(column_name) counts only rows where the column is NOT NULL. 2๏ธโฃ Q: When would you use GROUP BY with aggregate functions?
A:
Use GROUP BY when you want to apply aggregate functions per group (e.g., department-wise total salary):
SELECT department, SUM(salary) FROM employees GROUP BY department;
3๏ธโฃ Q: What does the COALESCE() function do?
A:
COALESCE() returns the first non-null value from the list of arguments.
Example:
SELECT COALESCE(phone, 'N/A') FROM users;
4๏ธโฃ Q: How does the CASE statement work in SQL?
A:
CASE is used for conditional logic inside queries.
Example:
SELECT name,
CASE
WHEN score >= 90 THEN 'A'
WHEN score >= 75 THEN 'B'
ELSE 'C'
END AS grade
FROM students;
5๏ธโฃ Q: Whatโs the use of SUBSTRING() function?
A:
It extracts a part of a string.
Example:
SELECT SUBSTRING('DataScience', 1, 4); -- Output: Data6๏ธโฃ Q: Whatโs the output of LENGTH('SQL')?
A:
It returns the length of the string: 3
7๏ธโฃ Q: How do you find the number of days between two dates?
A:
Use
DATEDIFF(end_date, start_date) Example:
SELECT DATEDIFF('2026-01-10', '2026-01-05'); -- Output: 58๏ธโฃ Q: What does ROUND() do in SQL?
A:
It rounds a number to the specified decimal places.
Example:
SELECT ROUND(3.456, 2); -- Output: 3.46
๐ก Pro Tip: Always mention real use cases when answering โ it shows practical understanding.
๐ฌ Tap โค๏ธ for more!
โค23
1๏ธโฃ What does the following code print?
print("Hello, Python")
print("Hello, Python")
Anonymous Quiz
14%
A. Hello Python
72%
B. Hello, Python
10%
C. "Hello, Python"
4%
D. Syntax Error
โค11
2๏ธโฃ Which of these is a valid variable name in Python?
Anonymous Quiz
10%
A. 1name
80%
B. name_1
4%
C. name-1
6%
D. @name
โค5
3๏ธโฃ What is the output of this code?
print(10 // 3)
print(10 // 3)
Anonymous Quiz
50%
A. 3.33
38%
B. 3
3%
C. 4
9%
D. 3.0
โค8๐ฅ2
โค7
What will this code output?*
print("Hi " * 2)
print("Hi " * 2)
Anonymous Quiz
39%
A. HiHi
10%
B. Hi 2
42%
C. Hi Hi
9%
D. Error
โค6
What is the correct way to check the type of a variable x?
Anonymous Quiz
22%
A. typeof(x)
13%
B. checktype(x)
55%
C. type(x)
10%
D. x.type()
โค7๐4๐2
๐ง๐ผ๐ฝ ๐ฑ ๐๐ป-๐๐ฒ๐บ๐ฎ๐ป๐ฑ ๐ฆ๐ธ๐ถ๐น๐น๐ ๐๐ผ ๐๐ผ๐ฐ๐๐ ๐ผ๐ป ๐ถ๐ป ๐ฎ๐ฌ๐ฎ๐ฒ๐
Start learning industry-relevant data skills today at zero cost!
๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐:- https://pdlink.in/497MMLw
๐๐ & ๐ ๐ :- https://pdlink.in/4bhetTu
๐๐น๐ผ๐๐ฑ ๐๐ผ๐บ๐ฝ๐๐๐ถ๐ป๐ด:- https://pdlink.in/3LoutZd
๐๐๐ฏ๐ฒ๐ฟ ๐ฆ๐ฒ๐ฐ๐๐ฟ๐ถ๐๐:- https://pdlink.in/3N9VOyW
๐ข๐๐ต๐ฒ๐ฟ ๐ง๐ฒ๐ฐ๐ต ๐๐ผ๐๐ฟ๐๐ฒ๐:- https://pdlink.in/4qgtrxU
๐ Enroll Now & Get Certified
Start learning industry-relevant data skills today at zero cost!
๐๐ฎ๐๐ฎ ๐๐ป๐ฎ๐น๐๐๐ถ๐ฐ๐:- https://pdlink.in/497MMLw
๐๐ & ๐ ๐ :- https://pdlink.in/4bhetTu
๐๐น๐ผ๐๐ฑ ๐๐ผ๐บ๐ฝ๐๐๐ถ๐ป๐ด:- https://pdlink.in/3LoutZd
๐๐๐ฏ๐ฒ๐ฟ ๐ฆ๐ฒ๐ฐ๐๐ฟ๐ถ๐๐:- https://pdlink.in/3N9VOyW
๐ข๐๐ต๐ฒ๐ฟ ๐ง๐ฒ๐ฐ๐ต ๐๐ผ๐๐ฟ๐๐ฒ๐:- https://pdlink.in/4qgtrxU
๐ Enroll Now & Get Certified
๐3โค1
โ
BI Tools Part-1: Introduction to Power BI Tableau ๐๐ฅ๏ธ
If you want to turn raw data into powerful stories and dashboards, Business Intelligence (BI) tools are a must. Power BI and Tableau are two of the most in-demand tools in analytics today.
1๏ธโฃ What is Power BI?
Power BI is a business analytics tool by Microsoft that helps visualize data and share insights across your organization.
โข Drag-and-drop interface
โข Seamless with Excel Azure
โข Used widely in enterprises
2๏ธโฃ What is Tableau?
Tableau is a powerful visualization platform known for interactive dashboards and beautiful charts.
โข User-friendly
โข Real-time analytics
โข Great for storytelling with data
3๏ธโฃ Why learn Power BI or Tableau?
โข Demand in job market is very high
โข Helps you convert raw data โ meaningful insights
โข Often used by data analysts, business analysts, decision-makers
4๏ธโฃ Basic Features You'll Learn:
โข Connecting data sources (Excel, SQL, CSV, etc.)
โข Creating bar, line, pie, map visuals
โข Using filters, slicers, and drill-through
โข Building dashboards reports
โข Publishing and sharing with teams
5๏ธโฃ Real-World Use Cases:
โข Sales dashboard tracking targets
โข HR dashboard showing attrition and hiring trends
โข Marketing funnel analysis
โข Financial KPI tracking
๐ง Tools to Install:
โข Power BI Desktop (Free for Windows)
โข Tableau Public (Free version for practice)
๐ง Practice Task:
โข Download a sample Excel dataset (e.g. sales data)
โข Load it into Power BI or Tableau
โข Try building 3 simple visuals: bar chart, pie chart, and table
Power BI: https://whatsapp.com/channel/0029Vai1xKf1dAvuk6s1v22c
Tableau: https://whatsapp.com/channel/0029VasYW1V5kg6z4EHOHG1t
๐ฌ Tap โค๏ธ for more!
If you want to turn raw data into powerful stories and dashboards, Business Intelligence (BI) tools are a must. Power BI and Tableau are two of the most in-demand tools in analytics today.
1๏ธโฃ What is Power BI?
Power BI is a business analytics tool by Microsoft that helps visualize data and share insights across your organization.
โข Drag-and-drop interface
โข Seamless with Excel Azure
โข Used widely in enterprises
2๏ธโฃ What is Tableau?
Tableau is a powerful visualization platform known for interactive dashboards and beautiful charts.
โข User-friendly
โข Real-time analytics
โข Great for storytelling with data
3๏ธโฃ Why learn Power BI or Tableau?
โข Demand in job market is very high
โข Helps you convert raw data โ meaningful insights
โข Often used by data analysts, business analysts, decision-makers
4๏ธโฃ Basic Features You'll Learn:
โข Connecting data sources (Excel, SQL, CSV, etc.)
โข Creating bar, line, pie, map visuals
โข Using filters, slicers, and drill-through
โข Building dashboards reports
โข Publishing and sharing with teams
5๏ธโฃ Real-World Use Cases:
โข Sales dashboard tracking targets
โข HR dashboard showing attrition and hiring trends
โข Marketing funnel analysis
โข Financial KPI tracking
๐ง Tools to Install:
โข Power BI Desktop (Free for Windows)
โข Tableau Public (Free version for practice)
๐ง Practice Task:
โข Download a sample Excel dataset (e.g. sales data)
โข Load it into Power BI or Tableau
โข Try building 3 simple visuals: bar chart, pie chart, and table
Power BI: https://whatsapp.com/channel/0029Vai1xKf1dAvuk6s1v22c
Tableau: https://whatsapp.com/channel/0029VasYW1V5kg6z4EHOHG1t
๐ฌ Tap โค๏ธ for more!
โค13๐4
โ
BI Tools Part-2: Power BI Hands-On Tutorial ๐ ๏ธ๐
Letโs walk through the basic workflow of creating a dashboard in Power BI using a sample Excel dataset (e.g. sales, HR, or marketing data).
1๏ธโฃ Open Power BI Desktop
Launch the tool and start a Blank Report.
2๏ธโฃ Load Your Data
โข Click Home > Get Data > Excel
โข Select your Excel file and choose the sheet
โข Click Load
Now your data appears in the Fields pane.
3๏ธโฃ Explore the Data
โข Click Data View to inspect rows and columns
โข Check for missing values, types (text, number, date)
4๏ธโฃ Create Visuals (Report View)
Try adding these:
โข Bar Chart:
Drag Region to Axis, Sales to Values
โ Shows sales by region
โข Pie Chart:
Drag Category to Legend, Revenue to Values
โ Shows revenue share by category
โข Card:
Drag Profit to a card visual
โ Displays total profit
โข Table:
Drag multiple fields to see raw data in a table
5๏ธโฃ Add Filters and Slicers
โข Insert a Slicer โ Drag Month
โข Now you can filter data month-wise with a click
6๏ธโฃ Format the Dashboard
โข Rename visuals
โข Adjust colors and fonts
โข Use Gridlines to align elements
7๏ธโฃ Save Share
โข Save as .pbix file
โข Publish to Power BI service (requires Microsoft account)
โ Share via link or embed in website
๐ง Practice Task:
Build a basic Sales Dashboard showing:
โข Total Sales
โข Sales by Region
โข Revenue by Product
โข Monthly Trend (line chart)
๐ฌ Tap โค๏ธ for more
Letโs walk through the basic workflow of creating a dashboard in Power BI using a sample Excel dataset (e.g. sales, HR, or marketing data).
1๏ธโฃ Open Power BI Desktop
Launch the tool and start a Blank Report.
2๏ธโฃ Load Your Data
โข Click Home > Get Data > Excel
โข Select your Excel file and choose the sheet
โข Click Load
Now your data appears in the Fields pane.
3๏ธโฃ Explore the Data
โข Click Data View to inspect rows and columns
โข Check for missing values, types (text, number, date)
4๏ธโฃ Create Visuals (Report View)
Try adding these:
โข Bar Chart:
Drag Region to Axis, Sales to Values
โ Shows sales by region
โข Pie Chart:
Drag Category to Legend, Revenue to Values
โ Shows revenue share by category
โข Card:
Drag Profit to a card visual
โ Displays total profit
โข Table:
Drag multiple fields to see raw data in a table
5๏ธโฃ Add Filters and Slicers
โข Insert a Slicer โ Drag Month
โข Now you can filter data month-wise with a click
6๏ธโฃ Format the Dashboard
โข Rename visuals
โข Adjust colors and fonts
โข Use Gridlines to align elements
7๏ธโฃ Save Share
โข Save as .pbix file
โข Publish to Power BI service (requires Microsoft account)
โ Share via link or embed in website
๐ง Practice Task:
Build a basic Sales Dashboard showing:
โข Total Sales
โข Sales by Region
โข Revenue by Product
โข Monthly Trend (line chart)
๐ฌ Tap โค๏ธ for more
โค17
๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ ๐ฎ๐ป๐ฑ ๐๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ถ๐ฎ๐น ๐๐ป๐๐ฒ๐น๐น๐ถ๐ด๐ฒ๐ป๐ฐ๐ฒ ๐๐ฒ๐ฟ๐๐ถ๐ณ๐ถ๐ฐ๐ฎ๐๐ถ๐ผ๐ป ๐ฃ๐ฟ๐ผ๐ด๐ฟ๐ฎ๐บ ๐ฏ๐ ๐๐๐ง ๐ฅ๐ผ๐ผ๐ฟ๐ธ๐ฒ๐ฒ๐
Deadline: 11th January 2026
Eligibility: Open to everyone
Duration: 6 Months
Program Mode: Online
Taught By: IIT Roorkee Professors
Companies majorly hire candidates having Data Science and Artificial Intelligence knowledge these days.
๐ฅ๐ฒ๐ด๐ถ๐๐๐ฟ๐ฎ๐๐ถ๐ผ๐ป ๐๐ถ๐ป๐ธ๐:
https://pdlink.in/4qNGMO6
Only Limited Seats Available!
Deadline: 11th January 2026
Eligibility: Open to everyone
Duration: 6 Months
Program Mode: Online
Taught By: IIT Roorkee Professors
Companies majorly hire candidates having Data Science and Artificial Intelligence knowledge these days.
๐ฅ๐ฒ๐ด๐ถ๐๐๐ฟ๐ฎ๐๐ถ๐ผ๐ป ๐๐ถ๐ป๐ธ๐:
https://pdlink.in/4qNGMO6
Only Limited Seats Available!
โค3
โ
Data Analytics Real-World Use Cases ๐๐
Data analytics turns raw data into actionable insights. Here's how it creates value across industries:
1๏ธโฃ Sales Marketing
Use Case: Customer Segmentation
โข Analyze purchase history, demographics, and behavior
โข Identify high-value vs low-value customers
โข Personalize marketing campaigns
Tools: SQL, Excel, Python, Tableau
2๏ธโฃ Human Resources (HR Analytics)
Use Case: Employee Retention
โข Track employee satisfaction, performance, exit trends
โข Predict attrition risk
โข Optimize hiring decisions
Tools: Excel, Power BI, Python (Pandas)
3๏ธโฃ E-commerce
Use Case: Product Recommendation Engine
โข Use clickstream and purchase data
โข Analyze buying patterns
โข Improve cross-selling and upselling
Tools: Python (NumPy, Pandas), Machine Learning
4๏ธโฃ Finance Banking
Use Case: Fraud Detection
โข Analyze unusual patterns in transactions
โข Flag high-risk activity in real-time
โข Reduce financial losses
Tools: SQL, Python, ML models
5๏ธโฃ Healthcare
Use Case: Predictive Patient Care
โข Analyze patient history and lab results
โข Identify early signs of disease
โข Recommend preventive measures
Tools: Python, Jupyter, visualization libraries
6๏ธโฃ Supply Chain
Use Case: Inventory Optimization
โข Forecast product demand
โข Reduce overstock/stockouts
โข Improve delivery times
Tools: Excel, Python, Power BI
7๏ธโฃ Education
Use Case: Student Performance Analysis
โข Identify struggling students
โข Evaluate teaching effectiveness
โข Plan interventions
Tools: Google Sheets, Tableau, SQL
๐ง Practice Idea:
Choose one domain โ Find a dataset โ Ask a real question โ Clean โ Analyze โ Visualize โ Present
๐ฌ Tap โค๏ธ for more
Data analytics turns raw data into actionable insights. Here's how it creates value across industries:
1๏ธโฃ Sales Marketing
Use Case: Customer Segmentation
โข Analyze purchase history, demographics, and behavior
โข Identify high-value vs low-value customers
โข Personalize marketing campaigns
Tools: SQL, Excel, Python, Tableau
2๏ธโฃ Human Resources (HR Analytics)
Use Case: Employee Retention
โข Track employee satisfaction, performance, exit trends
โข Predict attrition risk
โข Optimize hiring decisions
Tools: Excel, Power BI, Python (Pandas)
3๏ธโฃ E-commerce
Use Case: Product Recommendation Engine
โข Use clickstream and purchase data
โข Analyze buying patterns
โข Improve cross-selling and upselling
Tools: Python (NumPy, Pandas), Machine Learning
4๏ธโฃ Finance Banking
Use Case: Fraud Detection
โข Analyze unusual patterns in transactions
โข Flag high-risk activity in real-time
โข Reduce financial losses
Tools: SQL, Python, ML models
5๏ธโฃ Healthcare
Use Case: Predictive Patient Care
โข Analyze patient history and lab results
โข Identify early signs of disease
โข Recommend preventive measures
Tools: Python, Jupyter, visualization libraries
6๏ธโฃ Supply Chain
Use Case: Inventory Optimization
โข Forecast product demand
โข Reduce overstock/stockouts
โข Improve delivery times
Tools: Excel, Python, Power BI
7๏ธโฃ Education
Use Case: Student Performance Analysis
โข Identify struggling students
โข Evaluate teaching effectiveness
โข Plan interventions
Tools: Google Sheets, Tableau, SQL
๐ง Practice Idea:
Choose one domain โ Find a dataset โ Ask a real question โ Clean โ Analyze โ Visualize โ Present
๐ฌ Tap โค๏ธ for more
โค12๐4
โ
Python Control Flow Part 1: if, elif, else ๐ง ๐ป
What is Control Flow?
๐ Your code makes decisions
๐ Runs only when conditions are met
โข Each condition is True or False
โข Python checks from top to bottom
๐น Basic if statement
โถ๏ธ Checks if age is 18 or more. Prints "You are eligible to vote"
๐น if-else example
โถ๏ธ Age is 16, so it prints "Not eligible"
๐น elif for multiple conditions
โถ๏ธ Marks = 72, so it matches >= 60 and prints "Grade C"
๐น Comparison Operators
โถ๏ธ Since 10 โ 20, it prints "Values are different"
๐น Logical Operators
โถ๏ธ Both conditions are True โ prints "Entry allowed"
โ ๏ธ Common Mistakes:
โข Using
โข Bad indentation
โข Comparing incompatible data types
๐ Mini Project โ Age Category Checker
โถ๏ธ Takes age as input and prints the category
๐ Practice Tasks:
1. Check if a number is even or odd
2. Check if number is +ve, -ve, or 0
3. Print the larger of two numbers
4. Check if a year is leap year
โ Practice Task Solutions โ Try it yourself first ๐
1๏ธโฃ Check if a number is even or odd
โถ๏ธ
2๏ธโฃ Check if number is positive, negative, or zero
โถ๏ธ Uses > and < to check sign of number.
3๏ธโฃ Print the larger of two numbers
โถ๏ธ Compares a and b and prints the larger one.
4๏ธโฃ Check if a year is leap year
โถ๏ธ Follows leap year rules:
- Divisible by 4 โ
- But not divisible by 100 โ
- Unless also divisible by 400 โ
๐ Daily Rule:
โ Code 60 mins
โ Run every example
โ Change inputs and observe output
๐ฌ Tap โค๏ธ if this helped you!
Python Programming Roadmap: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L/2312
What is Control Flow?
๐ Your code makes decisions
๐ Runs only when conditions are met
โข Each condition is True or False
โข Python checks from top to bottom
๐น Basic if statement
age = 20
if age >= 18:
print("You are eligible to vote")
โถ๏ธ Checks if age is 18 or more. Prints "You are eligible to vote"
๐น if-else example
age = 16
if age >= 18:
print("Eligible to vote")
else:
print("Not eligible")
โถ๏ธ Age is 16, so it prints "Not eligible"
๐น elif for multiple conditions
marks = 72
if marks >= 90:
print("Grade A")
elif marks >= 75:
print("Grade B")
elif marks >= 60:
print("Grade C")
else:
print("Fail")
โถ๏ธ Marks = 72, so it matches >= 60 and prints "Grade C"
๐น Comparison Operators
a = 10
b = 20
if a != b:
print("Values are different")
โถ๏ธ Since 10 โ 20, it prints "Values are different"
๐น Logical Operators
age = 25
has_id = True
if age >= 18 and has_id:
print("Entry allowed")
โถ๏ธ Both conditions are True โ prints "Entry allowed"
โ ๏ธ Common Mistakes:
โข Using
= instead of == โข Bad indentation
โข Comparing incompatible data types
๐ Mini Project โ Age Category Checker
age = int(input("Enter age: "))
if age < 13:
print("Child")
elif age <= 19:
print("Teen")
else:
print("Adult")
โถ๏ธ Takes age as input and prints the category
๐ Practice Tasks:
1. Check if a number is even or odd
2. Check if number is +ve, -ve, or 0
3. Print the larger of two numbers
4. Check if a year is leap year
โ Practice Task Solutions โ Try it yourself first ๐
1๏ธโฃ Check if a number is even or odd
num = int(input("Enter a number: "))
if num % 2 == 0:
print("Even number")
else:
print("Odd number")
โถ๏ธ
% gives remainder. If remainder is 0, it's even.2๏ธโฃ Check if number is positive, negative, or zero
num = float(input("Enter a number: "))
if num > 0:
print("Positive number")
elif num < 0:
print("Negative number")
else:
print("Zero")
โถ๏ธ Uses > and < to check sign of number.
3๏ธโฃ Print the larger of two numbers
a = int(input("Enter first number: "))
b = int(input("Enter second number: "))
if a > b:
print("Larger number is:", a)
elif b > a:
print("Larger number is:", b)
else:
print("Both are equal")
โถ๏ธ Compares a and b and prints the larger one.
4๏ธโฃ Check if a year is leap year
year = int(input("Enter a year: "))
if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0):
print("Leap year")
else:
print("Not a leap year")
โถ๏ธ Follows leap year rules:
- Divisible by 4 โ
- But not divisible by 100 โ
- Unless also divisible by 400 โ
๐ Daily Rule:
โ Code 60 mins
โ Run every example
โ Change inputs and observe output
๐ฌ Tap โค๏ธ if this helped you!
Python Programming Roadmap: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L/2312
โค10
โ
SQL for Data Analytics ๐๐ง
Mastering SQL is essential for analyzing, filtering, and summarizing large datasets. Here's a quick guide with real-world use cases:
1๏ธโฃ SELECT, WHERE, AND, OR
Filter specific rows from your data.
2๏ธโฃ ORDER BY & LIMIT
Sort and limit your results.
โถ๏ธ Top 5 highest salaries
3๏ธโฃ GROUP BY + Aggregates (SUM, AVG, COUNT)
Summarize data by groups.
4๏ธโฃ HAVING
Filter grouped data (use after GROUP BY).
5๏ธโฃ JOINs
Combine data from multiple tables.
6๏ธโฃ CASE Statements
Create conditional logic inside queries.
7๏ธโฃ DATE Functions
Analyze trends over time.
8๏ธโฃ Subqueries
Nested queries for advanced filters.
9๏ธโฃ Window Functions (Advanced)
โถ๏ธ Rank employees within each department
๐ก Used In:
โข Marketing: campaign ROI, customer segments
โข Sales: top performers, revenue by region
โข HR: attrition trends, headcount by dept
โข Finance: profit margins, cost control
SQL For Data Analytics: https://whatsapp.com/channel/0029Vb6hJmM9hXFCWNtQX944
๐ฌ Tap โค๏ธ for more
Mastering SQL is essential for analyzing, filtering, and summarizing large datasets. Here's a quick guide with real-world use cases:
1๏ธโฃ SELECT, WHERE, AND, OR
Filter specific rows from your data.
SELECT name, age
FROM employees
WHERE department = 'Sales' AND age > 30;
2๏ธโฃ ORDER BY & LIMIT
Sort and limit your results.
SELECT name, salary
FROM employees
ORDER BY salary DESC
LIMIT 5;
โถ๏ธ Top 5 highest salaries
3๏ธโฃ GROUP BY + Aggregates (SUM, AVG, COUNT)
Summarize data by groups.
SELECT department, AVG(salary) AS avg_salary
FROM employees
GROUP BY department;
4๏ธโฃ HAVING
Filter grouped data (use after GROUP BY).
SELECT department, COUNT(*) AS emp_count
FROM employees
GROUP BY department
HAVING emp_count > 10;
5๏ธโฃ JOINs
Combine data from multiple tables.
SELECT e.name, d.name AS dept_name
FROM employees e
JOIN departments d ON e.dept_id = d.id;
6๏ธโฃ CASE Statements
Create conditional logic inside queries.
SELECT name,
CASE
WHEN salary > 70000 THEN 'High'
WHEN salary > 40000 THEN 'Medium'
ELSE 'Low'
END AS salary_band
FROM employees;
7๏ธโฃ DATE Functions
Analyze trends over time.
SELECT MONTH(join_date) AS join_month, COUNT(*)
FROM employees
GROUP BY join_month;
8๏ธโฃ Subqueries
Nested queries for advanced filters.
SELECT name, salary
FROM employees
WHERE salary > (SELECT AVG(salary) FROM employees);
9๏ธโฃ Window Functions (Advanced)
SELECT name, department, salary,
RANK() OVER(PARTITION BY department ORDER BY salary DESC) AS dept_rank
FROM employees;
โถ๏ธ Rank employees within each department
๐ก Used In:
โข Marketing: campaign ROI, customer segments
โข Sales: top performers, revenue by region
โข HR: attrition trends, headcount by dept
โข Finance: profit margins, cost control
SQL For Data Analytics: https://whatsapp.com/channel/0029Vb6hJmM9hXFCWNtQX944
๐ฌ Tap โค๏ธ for more
โค9
๐๐ฅ๐๐ ๐ข๐ป๐น๐ถ๐ป๐ฒ ๐ ๐ฎ๐๐๐ฒ๐ฟ๐ฐ๐น๐ฎ๐๐ ๐ข๐ป ๐๐ฎ๐๐ฒ๐๐ ๐ง๐ฒ๐ฐ๐ต๐ป๐ผ๐น๐ผ๐ด๐ถ๐ฒ๐๐
- Data Science
- AI/ML
- Data Analytics
- UI/UX
- Full-stack Development
Get Job-Ready Guidance in Your Tech Journey
๐ฅ๐ฒ๐ด๐ถ๐๐๐ฒ๐ฟ ๐๐ผ๐ฟ ๐๐ฅ๐๐๐:-
https://pdlink.in/4sw5Ev8
Date :- 11th January 2026
- Data Science
- AI/ML
- Data Analytics
- UI/UX
- Full-stack Development
Get Job-Ready Guidance in Your Tech Journey
๐ฅ๐ฒ๐ด๐ถ๐๐๐ฒ๐ฟ ๐๐ผ๐ฟ ๐๐ฅ๐๐๐:-
https://pdlink.in/4sw5Ev8
Date :- 11th January 2026
โค2