Data Analytics
108K subscribers
130 photos
2 files
800 links
Perfect channel to learn Data Analytics

Learn SQL, Python, Alteryx, Tableau, Power BI and many more

For Promotions: @coderfun @love_data
Download Telegram
๐Ÿš€ Roadmap to Master Data Analytics in 50 Days! ๐Ÿ“Š๐Ÿ“ˆ

๐Ÿ“… Week 1โ€“2: Foundations
๐Ÿ”น Day 1โ€“3: What is Data Analytics? Tools overview
๐Ÿ”น Day 4โ€“7: Excel/Google Sheets (formulas, pivot tables, charts)
๐Ÿ”น Day 8โ€“10: SQL basics (SELECT, WHERE, JOIN, GROUP BY)

๐Ÿ“… Week 3โ€“4: Programming Data Handling
๐Ÿ”น Day 11โ€“15: Python for data (variables, loops, functions)
๐Ÿ”น Day 16โ€“20: Pandas, NumPy โ€“ data cleaning, filtering, aggregation

๐Ÿ“… Week 5โ€“6: Visualization EDA
๐Ÿ”น Day 21โ€“25: Data visualization (Matplotlib, Seaborn)
๐Ÿ”น Day 26โ€“30: Exploratory Data Analysis โ€“ ask questions, find trends

๐Ÿ“… Week 7โ€“8: BI Tools Advanced Skills
๐Ÿ”น Day 31โ€“35: Power BI / Tableau โ€“ dashboards, filters, DAX
๐Ÿ”น Day 36โ€“40: Real-world case studies โ€“ sales, HR, marketing data

๐ŸŽฏ Final Stretch: Projects Career Prep
๐Ÿ”น Day 41โ€“45: Capstone projects (end-to-end analysis + report)
๐Ÿ”น Day 46โ€“48: Resume, GitHub portfolio, LinkedIn optimization
๐Ÿ”น Day 49โ€“50: Mock interviews + SQL + Excel + scenario questions

๐Ÿ’ฌ Tap โค๏ธ for more!
โค56๐Ÿ‘2
โœ… Data Analytics Foundations: Part-1 ๐Ÿ“Š๐Ÿ’ป

๐Ÿ” What is Data Analytics?
Itโ€™s the process of examining data to uncover insights, trends, and patterns to support decision-making.

๐Ÿ“Œ 4 Key Types of Data Analytics:

1๏ธโƒฃ Descriptive Analytics โ€“ What happened?
โ†’ Summarizes past data (e.g., sales reports)

2๏ธโƒฃ Diagnostic Analytics โ€“ Why did it happen?
โ†’ Identifies causes/trends behind outcomes

3๏ธโƒฃ Predictive Analytics โ€“ What might happen next?
โ†’ Uses models to forecast future outcomes

4๏ธโƒฃ Prescriptive Analytics โ€“ What should we do?
โ†’ Recommends actions based on data insights

๐Ÿงฐ Popular Tools in Data Analytics:

1. Excel / Google Sheets
โ†’ Basics of data cleaning, formulas, pivot tables

2. SQL
โ†’ Extract, join, and filter data from databases

3. Power BI / Tableau
โ†’ Create dashboards and visual reports

4. Python (Pandas, NumPy, Matplotlib)
โ†’ Automate tasks, analyze large datasets, visualize insights

5. R
โ†’ Statistical analysis and data modeling

6. Google Data Studio
โ†’ Simple, free tool for creating interactive dashboards

7. SAS / SPSS (for statistical work)
โ†’ Used in healthcare, finance, and academic sectors

๐Ÿ“ˆ Basic Skills Needed:

โ€ข Data cleaning & preparation
โ€ข Data visualization
โ€ข Statistical analysis
โ€ข Business understanding
โ€ข Storytelling with data

๐Ÿ’ฌ Tap โค๏ธ for more!
โค29๐Ÿ‘5
โœ… Data Analytics Foundations Part-2: Excel for Data Analytics ๐Ÿ“Š๐Ÿงฎ

Excel is one of the most accessible and powerful tools for data cleaning, analysis, and quick visualizationsโ€”great for beginners and pros alike.

๐Ÿ“Œ Key Excel Features for Data Analytics:

1๏ธโƒฃ Formulas  Functions 
โ€ข SUM(), AVERAGE(), COUNT() โ€“ Basic calculations 
โ€ข IF(), VLOOKUP(), INDEX-MATCH() โ€“ Conditional logic  lookups 
โ€ข TEXT(), LEFT(), RIGHT() โ€“ Data formatting

2๏ธโƒฃ Pivot Tables 
โ€ข Summarize large datasets in seconds 
โ€ข Drag  drop to create custom reports 
โ€ข Group, filter, and sort easily

3๏ธโƒฃ Charts  Visualizations 
โ€ข Column, Line, Pie, and Combo charts 
โ€ข Use sparklines for quick trends 
โ€ข Add slicers for interactivity

4๏ธโƒฃ Data Cleaning Tools 
โ€ข Remove duplicates 
โ€ข Text to columns 
โ€ข Flash Fill for auto-pattern detection

5๏ธโƒฃ Data Analysis ToolPak 
โ€ข Run regression, t-tests, and more (enable from Add-ins)

6๏ธโƒฃ Conditional Formatting 
โ€ข Highlight trends, outliers, and specific values visually

7๏ธโƒฃ Filters  Sort 
โ€ข Organize and explore subsets of data quickly

๐Ÿ’ก Pro Tip: Use tables (Ctrl + T) to auto-expand formulas, enable filtering, and apply structured references.

Excel Resources: https://whatsapp.com/channel/0029VaifY548qIzv0u1AHz3i

๐Ÿ’ฌ Tap โค๏ธ for more!
โค19๐Ÿ‘1
โœ… Python Basics for Data Analytics ๐Ÿ“Š๐Ÿ

Python is one of the most in-demand languages for data analytics due to its simplicity, flexibility, and powerful libraries. Here's a detailed guide to get you started with the basics:

๐Ÿง  1. Variables Data Types
You use variables to store data.

name = "Alice"        # String  
age = 28 # Integer
height = 5.6 # Float
is_active = True # Boolean

Use Case: Store user details, flags, or calculated values.

๐Ÿ”„ 2. Data Structures

โœ… List โ€“ Ordered, changeable
fruits = ['apple', 'banana', 'mango']  
print(fruits[0]) # apple

โœ… Dictionary โ€“ Key-value pairs
person = {'name': 'Alice', 'age': 28}  
print(person['name']) # Alice

โœ… Tuple Set
Tuples = immutable, Sets = unordered unique

โš™๏ธ 3. Conditional Statements
score = 85  
if score >= 90:
print("Excellent")
elif score >= 75:
print("Good")
else:
print("Needs improvement")

Use Case: Decision making in data pipelines

๐Ÿ” 4. Loops
For loop
for fruit in fruits:  
print(fruit)


While loop
count = 0  
while count < 3:
print("Hello")
count += 1

๐Ÿ”ฃ 5. Functions
Reusable blocks of logic

def add(x, y):  
return x + y

print(add(10, 5)) # 15

๐Ÿ“‚ 6. File Handling
Read/write data files

with open('data.txt', 'r') as file:  
content = file.read()
print(content)

๐Ÿงฐ 7. Importing Libraries
import pandas as pd  
import numpy as np
import matplotlib.pyplot as plt

Use Case: These libraries supercharge Python for analytics.

๐Ÿงน 8. Real Example: Analyzing Data
import pandas as pd  

df = pd.read_csv('sales.csv') # Load data
print(df.head()) # Preview

# Basic stats
print(df.describe())
print(df['Revenue'].mean())


๐ŸŽฏ Why Learn Python for Data Analytics?
โœ… Easy to learn
โœ… Huge library support (Pandas, NumPy, Matplotlib)
โœ… Ideal for cleaning, exploring, and visualizing data
โœ… Works well with SQL, Excel, APIs, and BI tools

Python Programming: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L

๐Ÿ’ฌ Double Tap โค๏ธ for more!
โค22๐Ÿ‘11
๐—™๐—ฅ๐—˜๐—˜ ๐—ข๐—ป๐—น๐—ถ๐—ป๐—ฒ ๐— ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ๐—ฐ๐—น๐—ฎ๐˜€๐˜€ ๐—•๐˜† ๐—œ๐—ป๐—ฑ๐˜‚๐˜€๐˜๐—ฟ๐˜† ๐—˜๐˜…๐—ฝ๐—ฒ๐—ฟ๐˜๐˜€ ๐Ÿ˜

Roadmap to land your dream job in top product-based companies

๐—›๐—ถ๐—ด๐—ต๐—น๐—ถ๐—ด๐—ต๐˜๐—ฒ๐˜€:-
- 90-Day Placement Plan
- Tech & Non-Tech Career Path
- Interview Preparation Tips
- Live Q&A

๐—ฅ๐—ฒ๐—ด๐—ถ๐˜€๐˜๐—ฒ๐—ฟ ๐—™๐—ผ๐—ฟ ๐—™๐—ฅ๐—˜๐—˜๐Ÿ‘‡:- 

https://pdlink.in/3Ltb3CE

Date & Time:- 06th January 2026 , 7PM
โค2
โœ… Exploratory Data Analysis (EDA) ๐Ÿ”๐Ÿ“Š

EDA is the first and most important step in any data analytics or machine learning project. It helps you understand the data, spot patterns, detect outliers, and prepare for modeling.

1๏ธโƒฃ Load and Understand the Data
import pandas as pd

df = pd.read_csv("sales_data.csv")
print(df.head())
print(df.shape)

Goal: Get the structure (rows, columns), data types, and sample values.

2๏ธโƒฃ Summary and Info
df.info()
df.describe()

Goal:
โ€ข See null values
โ€ข Understand distributions (mean, std, min, max)

3๏ธโƒฃ Check for Missing Values
df.isnull().sum()

๐Ÿ“Œ Fix options:
โ€ข df.fillna(0) โ€“ Fill missing values
โ€ข df.dropna() โ€“ Remove rows with nulls

4๏ธโƒฃ Unique Values Frequency Counts
df['Region'].value_counts()
df['Product'].unique()

Goal: Understand categorical features.

5๏ธโƒฃ Data Type Conversion (if needed)
df['Date'] = pd.to_datetime(df['Date'])
df['Amount'] = df['Amount'].astype(float)


6๏ธโƒฃ Detecting Duplicates Removing
df.duplicated().sum()
df.drop_duplicates(inplace=True)


7๏ธโƒฃ Univariate Analysis (1 Variable)
import seaborn as sns
import matplotlib.pyplot as plt

sns.histplot(df['Sales'])
sns.boxplot(y=df['Profit'])
plt.show()

Goal: View distribution and detect outliers.

8๏ธโƒฃ Bivariate Analysis (2 Variables)
sns.scatterplot(x='Sales', y='Profit', data=df)
sns.boxplot(x='Region', y='Sales', data=df)


9๏ธโƒฃ Correlation Analysis
sns.heatmap(df.corr(numeric_only=True), annot=True)

Goal: Identify relationships between numerical features.

๐Ÿ”Ÿ Grouped Aggregation
df.groupby('Region')['Revenue'].sum()
df.groupby(['Region', 'Category'])['Sales'].mean()

Goal: Segment data and compare.

1๏ธโƒฃ1๏ธโƒฃ Time Series Trends (If date present)
df.set_index('Date')['Sales'].resample('M').sum().plot()
plt.title("Monthly Sales Trend")


๐Ÿง  Key Questions to Ask During EDA:
โ€ข Are there missing or duplicate values?
โ€ข Which products or regions perform best?
โ€ข Are there seasonal trends in sales?
โ€ข Are there outliers or strange values?
โ€ข Which variables are strongly correlated?

๐ŸŽฏ Goal of EDA:
โ€ข Spot data quality issues
โ€ข Understand feature relationships
โ€ข Prepare for modeling or dashboarding

๐Ÿ’ฌ Tap โค๏ธ for more!
โค12๐Ÿ‘Œ6
โœ… SQL Functions Interview Questions with Answers ๐ŸŽฏ๐Ÿ“š

1๏ธโƒฃ Q: What is the difference between COUNT(*) and COUNT(column_name)?
A:
- COUNT(*) counts all rows, including those with NULLs.
- COUNT(column_name) counts only rows where the column is NOT NULL.

2๏ธโƒฃ Q: When would you use GROUP BY with aggregate functions?
A:
Use GROUP BY when you want to apply aggregate functions per group (e.g., department-wise total salary):
SELECT department, SUM(salary) FROM employees GROUP BY department;


3๏ธโƒฃ Q: What does the COALESCE() function do?
A:
COALESCE() returns the first non-null value from the list of arguments.
Example:
SELECT COALESCE(phone, 'N/A') FROM users;


4๏ธโƒฃ Q: How does the CASE statement work in SQL?
A:
CASE is used for conditional logic inside queries.
Example:
SELECT name,  
CASE
WHEN score >= 90 THEN 'A'
WHEN score >= 75 THEN 'B'
ELSE 'C'
END AS grade
FROM students;


5๏ธโƒฃ Q: Whatโ€™s the use of SUBSTRING() function?
A:
It extracts a part of a string.
Example:
SELECT SUBSTRING('DataScience', 1, 4); -- Output: Data


6๏ธโƒฃ Q: Whatโ€™s the output of LENGTH('SQL')?
A:
It returns the length of the string: 3

7๏ธโƒฃ Q: How do you find the number of days between two dates?
A:
Use DATEDIFF(end_date, start_date)
Example:
SELECT DATEDIFF('2026-01-10', '2026-01-05'); -- Output: 5


8๏ธโƒฃ Q: What does ROUND() do in SQL?
A:
It rounds a number to the specified decimal places.
Example:
SELECT ROUND(3.456, 2); -- Output: 3.46


๐Ÿ’ก Pro Tip: Always mention real use cases when answering โ€” it shows practical understanding.

๐Ÿ’ฌ Tap โค๏ธ for more!
โค23
1๏ธโƒฃ What does the following code print?

print("Hello, Python")
Anonymous Quiz
14%
A. Hello Python
72%
B. Hello, Python
10%
C. "Hello, Python"
4%
D. Syntax Error
โค11
2๏ธโƒฃ Which of these is a valid variable name in Python?
Anonymous Quiz
10%
A. 1name
80%
B. name_1
4%
C. name-1
โค5
3๏ธโƒฃ What is the output of this code?

print(10 // 3)
Anonymous Quiz
50%
A. 3.33
38%
B. 3
3%
C. 4
9%
D. 3.0
โค8๐Ÿ”ฅ2
Which operator is used for string repetition?
Anonymous Quiz
22%
A. +
55%
B. *
16%
C. &
7%
D. %
โค7
What will this code output?*

print("Hi " * 2)
Anonymous Quiz
39%
A. HiHi
10%
B. Hi 2
42%
C. Hi Hi
9%
D. Error
โค6
What is the correct way to check the type of a variable x?
Anonymous Quiz
22%
A. typeof(x)
13%
B. checktype(x)
55%
C. type(x)
10%
D. x.type()
โค7๐Ÿ‘4๐Ÿ‘Ž2
๐—ง๐—ผ๐—ฝ ๐Ÿฑ ๐—œ๐—ป-๐——๐—ฒ๐—บ๐—ฎ๐—ป๐—ฑ ๐—ฆ๐—ธ๐—ถ๐—น๐—น๐˜€ ๐˜๐—ผ ๐—™๐—ผ๐—ฐ๐˜‚๐˜€ ๐—ผ๐—ป ๐—ถ๐—ป ๐Ÿฎ๐Ÿฌ๐Ÿฎ๐Ÿฒ๐Ÿ˜

Start learning industry-relevant data skills today at zero cost!

๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€:- https://pdlink.in/497MMLw

๐—”๐—œ & ๐— ๐—Ÿ :- https://pdlink.in/4bhetTu

๐—–๐—น๐—ผ๐˜‚๐—ฑ ๐—–๐—ผ๐—บ๐—ฝ๐˜‚๐˜๐—ถ๐—ป๐—ด:- https://pdlink.in/3LoutZd

๐—–๐˜†๐—ฏ๐—ฒ๐—ฟ ๐—ฆ๐—ฒ๐—ฐ๐˜‚๐—ฟ๐—ถ๐˜๐˜†:- https://pdlink.in/3N9VOyW

๐—ข๐˜๐—ต๐—ฒ๐—ฟ ๐—ง๐—ฒ๐—ฐ๐—ต ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€:- https://pdlink.in/4qgtrxU

๐ŸŽ“ Enroll Now & Get Certified
๐Ÿ‘3โค1
โœ… BI Tools Part-1: Introduction to Power BI  Tableau ๐Ÿ“Š๐Ÿ–ฅ๏ธ 

If you want to turn raw data into powerful stories and dashboards, Business Intelligence (BI) tools are a must. Power BI and Tableau are two of the most in-demand tools in analytics today.

1๏ธโƒฃ What is Power BI? 
Power BI is a business analytics tool by Microsoft that helps visualize data and share insights across your organization. 
โ€ข Drag-and-drop interface 
โ€ข Seamless with Excel  Azure 
โ€ข Used widely in enterprises 

2๏ธโƒฃ What is Tableau? 
Tableau is a powerful visualization platform known for interactive dashboards and beautiful charts. 
โ€ข User-friendly 
โ€ข Real-time analytics 
โ€ข Great for storytelling with data 

3๏ธโƒฃ Why learn Power BI or Tableau? 
โ€ข Demand in job market is very high 
โ€ข Helps you convert raw data โ†’ meaningful insights 
โ€ข Often used by data analysts, business analysts, decision-makers 

4๏ธโƒฃ Basic Features You'll Learn: 
โ€ข Connecting data sources (Excel, SQL, CSV, etc.) 
โ€ข Creating bar, line, pie, map visuals 
โ€ข Using filters, slicers, and drill-through 
โ€ข Building dashboards  reports 
โ€ข Publishing and sharing with teams 

5๏ธโƒฃ Real-World Use Cases: 
โ€ข Sales dashboard tracking targets 
โ€ข HR dashboard showing attrition and hiring trends 
โ€ข Marketing funnel analysis 
โ€ข Financial KPI tracking 

๐Ÿ”ง Tools to Install: 
โ€ข Power BI Desktop (Free for Windows) 
โ€ข Tableau Public (Free version for practice)

๐Ÿง  Practice Task: 
โ€ข Download a sample Excel dataset (e.g. sales data) 
โ€ข Load it into Power BI or Tableau 
โ€ข Try building 3 simple visuals: bar chart, pie chart, and table 

Power BI: https://whatsapp.com/channel/0029Vai1xKf1dAvuk6s1v22c

Tableau: https://whatsapp.com/channel/0029VasYW1V5kg6z4EHOHG1t

๐Ÿ’ฌ Tap โค๏ธ for more!
โค13๐Ÿ‘4
โœ… BI Tools Part-2: Power BI Hands-On Tutorial ๐Ÿ› ๏ธ๐Ÿ“ˆ

Letโ€™s walk through the basic workflow of creating a dashboard in Power BI using a sample Excel dataset (e.g. sales, HR, or marketing data).

1๏ธโƒฃ Open Power BI Desktop
Launch the tool and start a Blank Report.

2๏ธโƒฃ Load Your Data
โ€ข Click Home > Get Data > Excel
โ€ข Select your Excel file and choose the sheet
โ€ข Click Load

Now your data appears in the Fields pane.

3๏ธโƒฃ Explore the Data
โ€ข Click Data View to inspect rows and columns
โ€ข Check for missing values, types (text, number, date)

4๏ธโƒฃ Create Visuals (Report View)
Try adding these:

โ€ข Bar Chart:
Drag Region to Axis, Sales to Values
โ†’ Shows sales by region

โ€ข Pie Chart:
Drag Category to Legend, Revenue to Values
โ†’ Shows revenue share by category

โ€ข Card:
Drag Profit to a card visual
โ†’ Displays total profit

โ€ข Table:
Drag multiple fields to see raw data in a table

5๏ธโƒฃ Add Filters and Slicers
โ€ข Insert a Slicer โ†’ Drag Month
โ€ข Now you can filter data month-wise with a click

6๏ธโƒฃ Format the Dashboard
โ€ข Rename visuals
โ€ข Adjust colors and fonts
โ€ข Use Gridlines to align elements

7๏ธโƒฃ Save Share
โ€ข Save as .pbix file
โ€ข Publish to Power BI service (requires Microsoft account)
โ†’ Share via link or embed in website

๐Ÿง  Practice Task:
Build a basic Sales Dashboard showing:
โ€ข Total Sales
โ€ข Sales by Region
โ€ข Revenue by Product
โ€ข Monthly Trend (line chart)

๐Ÿ’ฌ Tap โค๏ธ for more
โค17
๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ฎ๐—ป๐—ฑ ๐—”๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ถ๐—ฎ๐—น ๐—œ๐—ป๐˜๐—ฒ๐—น๐—น๐—ถ๐—ด๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—ฃ๐—ฟ๐—ผ๐—ด๐—ฟ๐—ฎ๐—บ ๐—ฏ๐˜† ๐—œ๐—œ๐—ง ๐—ฅ๐—ผ๐—ผ๐—ฟ๐—ธ๐—ฒ๐—ฒ๐Ÿ˜

Deadline: 11th January 2026

Eligibility: Open to everyone
Duration: 6 Months
Program Mode: Online
Taught By: IIT Roorkee Professors

Companies majorly hire candidates having Data Science and Artificial Intelligence knowledge these days.

๐—ฅ๐—ฒ๐—ด๐—ถ๐˜€๐˜๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—Ÿ๐—ถ๐—ป๐—ธ๐Ÿ‘‡

https://pdlink.in/4qNGMO6

Only Limited Seats Available!
โค3
โœ… Data Analytics Real-World Use Cases ๐ŸŒ๐Ÿ“Š

Data analytics turns raw data into actionable insights. Here's how it creates value across industries:

1๏ธโƒฃ Sales Marketing
Use Case: Customer Segmentation
โ€ข Analyze purchase history, demographics, and behavior
โ€ข Identify high-value vs low-value customers
โ€ข Personalize marketing campaigns
Tools: SQL, Excel, Python, Tableau

2๏ธโƒฃ Human Resources (HR Analytics)
Use Case: Employee Retention
โ€ข Track employee satisfaction, performance, exit trends
โ€ข Predict attrition risk
โ€ข Optimize hiring decisions
Tools: Excel, Power BI, Python (Pandas)

3๏ธโƒฃ E-commerce
Use Case: Product Recommendation Engine
โ€ข Use clickstream and purchase data
โ€ข Analyze buying patterns
โ€ข Improve cross-selling and upselling
Tools: Python (NumPy, Pandas), Machine Learning

4๏ธโƒฃ Finance Banking
Use Case: Fraud Detection
โ€ข Analyze unusual patterns in transactions
โ€ข Flag high-risk activity in real-time
โ€ข Reduce financial losses
Tools: SQL, Python, ML models

5๏ธโƒฃ Healthcare
Use Case: Predictive Patient Care
โ€ข Analyze patient history and lab results
โ€ข Identify early signs of disease
โ€ข Recommend preventive measures
Tools: Python, Jupyter, visualization libraries

6๏ธโƒฃ Supply Chain
Use Case: Inventory Optimization
โ€ข Forecast product demand
โ€ข Reduce overstock/stockouts
โ€ข Improve delivery times
Tools: Excel, Python, Power BI

7๏ธโƒฃ Education
Use Case: Student Performance Analysis
โ€ข Identify struggling students
โ€ข Evaluate teaching effectiveness
โ€ข Plan interventions
Tools: Google Sheets, Tableau, SQL

๐Ÿง  Practice Idea:
Choose one domain โ†’ Find a dataset โ†’ Ask a real question โ†’ Clean โ†’ Analyze โ†’ Visualize โ†’ Present

๐Ÿ’ฌ Tap โค๏ธ for more
โค12๐Ÿ‘4
โœ… Python Control Flow Part 1: if, elif, else ๐Ÿง ๐Ÿ’ป

What is Control Flow?
๐Ÿ‘‰ Your code makes decisions
๐Ÿ‘‰ Runs only when conditions are met

โ€ข Each condition is True or False
โ€ข Python checks from top to bottom

๐Ÿ”น Basic if statement
age = 20  
if age >= 18:
print("You are eligible to vote")

โ–ถ๏ธ Checks if age is 18 or more. Prints "You are eligible to vote"

๐Ÿ”น if-else example
age = 16  
if age >= 18:
print("Eligible to vote")
else:
print("Not eligible")

โ–ถ๏ธ Age is 16, so it prints "Not eligible"

๐Ÿ”น elif for multiple conditions
marks = 72  
if marks >= 90:
print("Grade A")
elif marks >= 75:
print("Grade B")
elif marks >= 60:
print("Grade C")
else:
print("Fail")

โ–ถ๏ธ Marks = 72, so it matches >= 60 and prints "Grade C"

๐Ÿ”น Comparison Operators
a = 10  
b = 20
if a != b:
print("Values are different")

โ–ถ๏ธ Since 10 โ‰  20, it prints "Values are different"

๐Ÿ”น Logical Operators
age = 25  
has_id = True
if age >= 18 and has_id:
print("Entry allowed")

โ–ถ๏ธ Both conditions are True โ†’ prints "Entry allowed"

โš ๏ธ Common Mistakes:
โ€ข Using = instead of ==
โ€ข Bad indentation
โ€ข Comparing incompatible data types

๐Ÿ“Œ Mini Project โ€“ Age Category Checker
age = int(input("Enter age: "))  

if age < 13:
print("Child")
elif age <= 19:
print("Teen")
else:
print("Adult")

โ–ถ๏ธ Takes age as input and prints the category


๐Ÿ“ Practice Tasks:
1. Check if a number is even or odd
2. Check if number is +ve, -ve, or 0
3. Print the larger of two numbers
4. Check if a year is leap year

โœ… Practice Task Solutions โ€“ Try it yourself first ๐Ÿ‘‡

1๏ธโƒฃ Check if a number is even or odd
num = int(input("Enter a number: "))
if num % 2 == 0:
print("Even number")
else:
print("Odd number")

โ–ถ๏ธ % gives remainder. If remainder is 0, it's even.


2๏ธโƒฃ Check if number is positive, negative, or zero
num = float(input("Enter a number: "))
if num > 0:
print("Positive number")
elif num < 0:
print("Negative number")
else:
print("Zero")

โ–ถ๏ธ Uses > and < to check sign of number.


3๏ธโƒฃ Print the larger of two numbers
a = int(input("Enter first number: "))
b = int(input("Enter second number: "))

if a > b:
print("Larger number is:", a)
elif b > a:
print("Larger number is:", b)
else:
print("Both are equal")

โ–ถ๏ธ Compares a and b and prints the larger one.


4๏ธโƒฃ Check if a year is leap year
year = int(input("Enter a year: "))
if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0):
print("Leap year")
else:
print("Not a leap year")

โ–ถ๏ธ Follows leap year rules:
- Divisible by 4 โœ…
- But not divisible by 100 โŒ
- Unless also divisible by 400 โœ…


๐Ÿ“… Daily Rule:
โœ… Code 60 mins
โœ… Run every example
โœ… Change inputs and observe output

๐Ÿ’ฌ Tap โค๏ธ if this helped you!

Python Programming Roadmap: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L/2312
โค10
โœ… SQL for Data Analytics ๐Ÿ“Š๐Ÿง 

Mastering SQL is essential for analyzing, filtering, and summarizing large datasets. Here's a quick guide with real-world use cases:

1๏ธโƒฃ SELECT, WHERE, AND, OR
Filter specific rows from your data.
SELECT name, age  
FROM employees
WHERE department = 'Sales' AND age > 30;


2๏ธโƒฃ ORDER BY & LIMIT
Sort and limit your results.
SELECT name, salary  
FROM employees
ORDER BY salary DESC
LIMIT 5;


โ–ถ๏ธ Top 5 highest salaries

3๏ธโƒฃ GROUP BY + Aggregates (SUM, AVG, COUNT)
Summarize data by groups.
SELECT department, AVG(salary) AS avg_salary  
FROM employees
GROUP BY department;


4๏ธโƒฃ HAVING
Filter grouped data (use after GROUP BY).
SELECT department, COUNT(*) AS emp_count  
FROM employees
GROUP BY department
HAVING emp_count > 10;


5๏ธโƒฃ JOINs
Combine data from multiple tables.
SELECT e.name, d.name AS dept_name  
FROM employees e
JOIN departments d ON e.dept_id = d.id;


6๏ธโƒฃ CASE Statements
Create conditional logic inside queries.
SELECT name,  
CASE
WHEN salary > 70000 THEN 'High'
WHEN salary > 40000 THEN 'Medium'
ELSE 'Low'
END AS salary_band
FROM employees;


7๏ธโƒฃ DATE Functions
Analyze trends over time.
SELECT MONTH(join_date) AS join_month, COUNT(*)  
FROM employees
GROUP BY join_month;


8๏ธโƒฃ Subqueries
Nested queries for advanced filters.
SELECT name, salary  
FROM employees
WHERE salary > (SELECT AVG(salary) FROM employees);


9๏ธโƒฃ Window Functions (Advanced)
SELECT name, department, salary,  
RANK() OVER(PARTITION BY department ORDER BY salary DESC) AS dept_rank
FROM employees;


โ–ถ๏ธ Rank employees within each department

๐Ÿ’ก Used In:
โ€ข Marketing: campaign ROI, customer segments
โ€ข Sales: top performers, revenue by region
โ€ข HR: attrition trends, headcount by dept
โ€ข Finance: profit margins, cost control

SQL For Data Analytics: https://whatsapp.com/channel/0029Vb6hJmM9hXFCWNtQX944

๐Ÿ’ฌ Tap โค๏ธ for more
โค9
๐—™๐—ฅ๐—˜๐—˜ ๐—ข๐—ป๐—น๐—ถ๐—ป๐—ฒ ๐— ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ๐—ฐ๐—น๐—ฎ๐˜€๐˜€ ๐—ข๐—ป ๐—Ÿ๐—ฎ๐˜๐—ฒ๐˜€๐˜ ๐—ง๐—ฒ๐—ฐ๐—ต๐—ป๐—ผ๐—น๐—ผ๐—ด๐—ถ๐—ฒ๐˜€๐Ÿ˜

- Data Science 
- AI/ML
- Data Analytics
- UI/UX
- Full-stack Development 

Get Job-Ready Guidance in Your Tech Journey

๐—ฅ๐—ฒ๐—ด๐—ถ๐˜€๐˜๐—ฒ๐—ฟ ๐—™๐—ผ๐—ฟ ๐—™๐—ฅ๐—˜๐—˜๐Ÿ‘‡:- 

https://pdlink.in/4sw5Ev8

Date :- 11th January 2026
โค2