Data Science. SQL hub
35.7K subscribers
956 photos
57 videos
37 files
1K links
По всем вопросам- @workakkk

@itchannels_telegram - 🔥лучшие ит-каналы

@ai_machinelearning_big_data - Machine learning

@pythonl - Python

@pythonlbooks- python книги📚

@datascienceiot - ml книги📚

РКН: https://vk.cc/cIi9vo
Download Telegram
Forwarded from Machinelearning
🧠 MCP сервер для баз данных от Google

Он выступает прослойкой между вашим агентом (например, LangChain, LlamaIndex, VertexAI) и базой данных, упрощая работу с базой, подключение, управление, безопасность и мониторинг.,

Подходит для разработки AI-агентов, которые могут создавать и управлять в реальными БД.

Особенности:
✔️ Подключение к БД за < 10 строк Python
✔️ Встроенный pooling и аутентификация
✔️ Простая интеграция в агентов (LangChain, Autogen, и т.д.)
✔️100% open-source
✔️Поддержка разных БД: PostgreSQL, MySQL, SQLite, SQL Server, AlloyDB, Cloud SQL, Spanner, BigQuery, Bigtable, Couchbase, Dgraph, Redis, Neo4j и др.
✔️Удобная конфигурация : простой синтаксис YAML для описания функций и запросов.


Если делаете агентов, которые работают с SQL/PostgreSQL/MySQL — точно стоит попробовать.

GitHub: https://github.com/googleapis/genai-toolbox

@ai_machinelearning_big_data


#AI #ML #aiagent #opensource #MCP #databases #genai
Please open Telegram to view this post
VIEW IN TELEGRAM
10🔥7👍5
📊 Новое поколение баз данных для ИИ-агентов

Когда LLM-агенты работают с БД, они не делают один большой запрос. Вместо этого они засыпают систему тысячами мелких пробных запросов: проверяют структуру, ищут связи, тестируют планы. Это явление получило название agentic speculation. Итог — колоссальный перерасход ресурсов.

🆕 Исследователи предлагают «agent-first database» — базу, спроектированную с учётом поведения агентов.

🔑 Как это работает:
- Агент отправляет не просто SQL-запрос, а пробу с брифом: какая цель, на каком этапе он сейчас, какая нужна точность и что в приоритете.
- База может дать приближённый ответ, если данных уже достаточно, вместо того чтобы тратить ресурсы на полный расчёт.
- Запросы поддерживают семантический поиск по таблицам и строкам, что в SQL выразить сложно.

⚙️ Внутренние механизмы:
- Sleeper agents подсказывают лучшие join’ы, объясняют пустые результаты и оценивают стоимость запросов.
- Оптимизатор проб объединяет похожие запросы, кэширует частичные результаты и выдаёт быстрые ответы, когда «достаточно сигнала».
- Agentic memory хранит знания, которые можно переиспользовать в будущем.
- Общий менеджер транзакций позволяет быстро пробовать разные сценарии («what-if») без лишних затрат.

📌 Вывод: традиционный SQL не подходит для эпохи LLM. Нужны базы, которые понимают стратегию агента, сокращают лишние шаги и экономят ресурсы.

🔗 Paper: arxiv.org/abs/2509.00997

#AI #Databases #LLM #Agents

@sqlhub
👍119🔥4👎1
🟡🔵 Разбираемся с SQL JOIN и фильтрами в OUTER JOIN

Одна из самых частых ошибок при работе с SQL - путаница между условием в ON и фильтром в WHERE. На картинке это отлично показано.

Когда мы пишем LEFT OUTER JOIN, мы ожидаем, что слева попадут все строки. Но результат зависит от того, где именно мы накладываем фильтры.

Пример:

У нас есть две таблицы:
- Левая: фигура + число
- Правая: число + фигура

Мы делаем LEFT OUTER JOIN.

1. Фильтр в ON
Если написать ON right_table.number = 1, то соединение будет проверять условие именно во время джойна. Это значит: строки слева сохранятся, даже если справа нет совпадений — просто будут NULL.

2. Фильтр в WHERE
Если написать WHERE left_table.number = 1, то фильтрация произойдёт уже после объединения. В этом случае строки, не прошедшие условие, полностью исчезнут из результата.

Почему это нужно знать?

- ON управляет логикой соединения.
- WHERE убирает строки после соединения.
- В OUTER JOIN это принципиальная разница: при фильтре в ON мы сохраним «пустые» строки, при фильтре в WHERE они будут удалены.


📌 Вывод:
- Если нужно оставить все строки из левой таблицы и лишь добавить совпадения справа - фильтр ставим в ON.
- Если хотим действительно отобрать только подходящие строки — фильтр в WHERE.

Именно поэтому в сложных запросах всегда спрашивай себя: фильтр — это часть логики соединения или это окончательное ограничение?

#SQL #joins #databases
9👍9🔥5