This media is not supported in your browser
VIEW IN TELEGRAM
Python-библиотека StreamJoy (https://ahuang11.github.io/streamjoy/) создаёт анимации MP4/GIF на основе списка изображений, каталогов, xr.Dataset, pd.DataFrame, hv.DynamicMap/HoloMap и даже напрямую из URL.
Анимация снимков геостационарного спутника Himawari:
#python
Анимация снимков геостационарного спутника Himawari:
from streamjoy import stream
if __name__ == "__main__":
URL_FMT = "https://www.goes.noaa.gov/dimg/jma/fd/vis/{i}.gif"
resources = [URL_FMT.format(i=i) for i in range(1, 11)]
stream(resources, uri="goes.gif") # .gif and .mp4 supported
#python
DeepForest (https://deepforest.readthedocs.io/en/latest/) — это пакет на языке Python для обнаружения и классификации объектов на RGB-снимках (сверх)высокого пространственного разрешения. Он использует сети глубокого обучения и построен на основе модуля обнаружения объектов из пакета torchvision.
DeepForest предназначен для упрощения обучения моделей обнаружения природных объектов, в частности, деревьев. Разработчики старались сделать его простым, настраиваемым и модульным, скрывая ненужные сложности от пользователя. Вот, например, как выглядит разметка снимка предобученной моделью:
DeepForest содержит две предобученные модели: Bird Detection и Tree Crown Detection.
Пакет неплохо документирован, снабжен примерами использования, а также советами по настройке, обучению и расширению возможностей.
🖥 Пример работы DeepForest в Google Colab (с инсталляцией пакетов)
В документах есть ссылки на публикации с описанием DeepForest, использованные для обучения снимки находятся в открытом доступе. Есть и “сторонние” примеры использования DeepForest:
🔗 Tree crown detection using DeepForest
#нейронки #python #лес
DeepForest предназначен для упрощения обучения моделей обнаружения природных объектов, в частности, деревьев. Разработчики старались сделать его простым, настраиваемым и модульным, скрывая ненужные сложности от пользователя. Вот, например, как выглядит разметка снимка предобученной моделью:
from deepforest import main
from deepforest import get_data
import matplotlib.pyplot as plt
model = main.deepforest()
model.use_release()
sample_image_path = get_data("OSBS_029.png")
img = model.predict_image(path=sample_image_path, return_plot=True)
plt.imshow(img[:,:,::-1])
DeepForest содержит две предобученные модели: Bird Detection и Tree Crown Detection.
Пакет неплохо документирован, снабжен примерами использования, а также советами по настройке, обучению и расширению возможностей.
🖥 Пример работы DeepForest в Google Colab (с инсталляцией пакетов)
В документах есть ссылки на публикации с описанием DeepForest, использованные для обучения снимки находятся в открытом доступе. Есть и “сторонние” примеры использования DeepForest:
🔗 Tree crown detection using DeepForest
#нейронки #python #лес
Joerd (https://github.com/tilezen/joerd) — консольная программа для загрузки, объединения и создания тайлов из цифровых моделей рельефа.
🗺 В документации есть список ссылок на источники ЦМР: https://github.com/tilezen/joerd/blob/master/docs/data-sources.md
#DEM #данные #python
🗺 В документации есть список ссылок на источники ЦМР: https://github.com/tilezen/joerd/blob/master/docs/data-sources.md
#DEM #данные #python
GitHub
GitHub - tilezen/joerd: Joerd can be used to download, merge and generate tiles from digital elevation data
Joerd can be used to download, merge and generate tiles from digital elevation data - tilezen/joerd
CoastSat
CoastSat (https://coastsat.wrl.unsw.edu.au) — это набор программных средств с открытым исходным кодом на языке Python (https://github.com/kvos/CoastSat), который позволяет пользователям получать временные ряды положения береговой линии на любом побережье по всему миру за 39 лет (и далее) на основе общедоступных спутниковых снимков.
#python
CoastSat (https://coastsat.wrl.unsw.edu.au) — это набор программных средств с открытым исходным кодом на языке Python (https://github.com/kvos/CoastSat), который позволяет пользователям получать временные ряды положения береговой линии на любом побережье по всему миру за 39 лет (и далее) на основе общедоступных спутниковых снимков.
#python
Статистика открытых радарных данных Capella [ссылка]
Mark Litwintschik описывает процесс получения открытых данных радарных спутников Capella и классифицирует доступные снимки по регионам мира, форматам, уровням обработки, типу поляризации и т. п.
🌍 Распространение открытых данных спутников Capella.
#SAR #capella #python
Mark Litwintschik описывает процесс получения открытых данных радарных спутников Capella и классифицирует доступные снимки по регионам мира, форматам, уровням обработки, типу поляризации и т. п.
🌍 Распространение открытых данных спутников Capella.
#SAR #capella #python
This media is not supported in your browser
VIEW IN TELEGRAM
Новые возможности geemap
Д-р. Qiusheng Wu, автор питоновского пакета geemap (https://geemap.org) для работы с Google Earth Engine (GEE) через Python API, сообщил об обновлении пакета.
Теперь с помощью geemap можно создавать интерактивные графики для различных типов данных GEE: feature, image, array, list и table.
#GEE #python
Д-р. Qiusheng Wu, автор питоновского пакета geemap (https://geemap.org) для работы с Google Earth Engine (GEE) через Python API, сообщил об обновлении пакета.
Теперь с помощью geemap можно создавать интерактивные графики для различных типов данных GEE: feature, image, array, list и table.
#GEE #python
Введение в ГИС-программирование на Python
Д-р. Qiusheng Wu, создатель нескольких известных пакетов Python 🐍 для работы с пространственными данными — geemap, leafmap и segment-geospatial — создал официальный сайт своего курса 📖 “Introduction to GIS Programming“ (https://geog-312.gishub.org/) по обучению применению языка Python для работы с пространственными данными.
Семестровый курс предполагает всестороннее изучение ГИС-программирования на языке Python. Студенты начнут с изучения основ языка, освоят использование библиотек и фреймворков, необходимых для обработки, анализа и визуализации пространственных данных. В частности, научатся создавать интерактивные веб-карты с помощью Leafmap, визуализировать векторные и растровые данные с помощью MapLibre, получат практический опыт работы с GeoPandas, Rasterio, WhiteboxTools, Geemap, SAMGeo, HyperCoast, DuckDB, Xarray и другими библиотеками.
📹 Видеоматериалы курса
#python #основы
Д-р. Qiusheng Wu, создатель нескольких известных пакетов Python 🐍 для работы с пространственными данными — geemap, leafmap и segment-geospatial — создал официальный сайт своего курса 📖 “Introduction to GIS Programming“ (https://geog-312.gishub.org/) по обучению применению языка Python для работы с пространственными данными.
Семестровый курс предполагает всестороннее изучение ГИС-программирования на языке Python. Студенты начнут с изучения основ языка, освоят использование библиотек и фреймворков, необходимых для обработки, анализа и визуализации пространственных данных. В частности, научатся создавать интерактивные веб-карты с помощью Leafmap, визуализировать векторные и растровые данные с помощью MapLibre, получат практический опыт работы с GeoPandas, Rasterio, WhiteboxTools, Geemap, SAMGeo, HyperCoast, DuckDB, Xarray и другими библиотеками.
📹 Видеоматериалы курса
#python #основы
В Alaska Satellite Facility завершено создание архива “импульсов” Sentinel-1 [ссылка]
Работа, проделанная Alaska Satellite Facility (ASF), позволяет существенно сэкономить время и вычислительные ресурсы, необходимые для анализа радарных данных Sentinel-1. Что же было сделало?
Типичный файл радарных данных Sentinel-1 Single-Look Complex (SLC) содержат три полосы (swath) данных по 8–10 импульсов (burst) в каждой. Такие файлы имеют довольно большой объем (4–5 Гб) и используются, в частности, для радарной интерферометрии.
Вырезать нужный фрагмент из данных Sentinel-1 SLC не так просто, как из оптического снимка. “Виноват” метод получения данных, TopSAR, при которым данные собираются импульсами путем циклического переключения луча антенны между несколькими соседними полосами. На рисунке 1️⃣ показана схема сканирования в трёх полосах (а) и сканирование импульсами в пределах одной полосы (b). Результат выглядит примерно так, как показано на рисунке 2️⃣ (источник).
Таким образом, импульс (burst) является атомарной единицей данных Sentinel-1 SLC. При изучении небольших объектов, таких как вулканы или оползни, достаточно взять из соседних по времени снимков только импульсы, покрывающие исследуемый объект, и построить по ним интерферограмму. Размер одного импульса составляет около 4% от общего размера файл данных.
До сих пор, прежде чем выбрать нужный импульс, мы должны были сначала скачать весь файл. Теперь этого делать не нужно, достаточно использовать новый продукт 🌍 Sentinel-1 Burst SLC 3️⃣.
Особенно приятно, что с импульсами уже работает HyP3: HyP3 Burst InSAR. С его помощью можно заказать генерацию InSAR-данных по одиночным импульсам.
Пакет burst2safe для 🐍 Python позволяет конвертировать данные импульсов в SAFE-файл, для использования в SAR-процессоре (например, в SNAP). В будущем SAFE станет для импульсов форматом по умолчанию.
#InSAR #python #данные
Работа, проделанная Alaska Satellite Facility (ASF), позволяет существенно сэкономить время и вычислительные ресурсы, необходимые для анализа радарных данных Sentinel-1. Что же было сделало?
Типичный файл радарных данных Sentinel-1 Single-Look Complex (SLC) содержат три полосы (swath) данных по 8–10 импульсов (burst) в каждой. Такие файлы имеют довольно большой объем (4–5 Гб) и используются, в частности, для радарной интерферометрии.
Вырезать нужный фрагмент из данных Sentinel-1 SLC не так просто, как из оптического снимка. “Виноват” метод получения данных, TopSAR, при которым данные собираются импульсами путем циклического переключения луча антенны между несколькими соседними полосами. На рисунке 1️⃣ показана схема сканирования в трёх полосах (а) и сканирование импульсами в пределах одной полосы (b). Результат выглядит примерно так, как показано на рисунке 2️⃣ (источник).
Таким образом, импульс (burst) является атомарной единицей данных Sentinel-1 SLC. При изучении небольших объектов, таких как вулканы или оползни, достаточно взять из соседних по времени снимков только импульсы, покрывающие исследуемый объект, и построить по ним интерферограмму. Размер одного импульса составляет около 4% от общего размера файл данных.
До сих пор, прежде чем выбрать нужный импульс, мы должны были сначала скачать весь файл. Теперь этого делать не нужно, достаточно использовать новый продукт 🌍 Sentinel-1 Burst SLC 3️⃣.
Особенно приятно, что с импульсами уже работает HyP3: HyP3 Burst InSAR. С его помощью можно заказать генерацию InSAR-данных по одиночным импульсам.
Пакет burst2safe для 🐍 Python позволяет конвертировать данные импульсов в SAFE-файл, для использования в SAR-процессоре (например, в SNAP). В будущем SAFE станет для импульсов форматом по умолчанию.
#InSAR #python #данные
Scikit-eo
Python-библиотека Scikit-eo (https://github.com/yotarazona/scikit-eo) предоставляет универсальные инструменты для анализа данных дистанционного зондирования Земли 🛰.
Страница библиотеки содержит серию примеров и руководств в виде jupyter-ноутбуков.
#python
Python-библиотека Scikit-eo (https://github.com/yotarazona/scikit-eo) предоставляет универсальные инструменты для анализа данных дистанционного зондирования Земли 🛰.
Страница библиотеки содержит серию примеров и руководств в виде jupyter-ноутбуков.
#python
Прогнозирование погоды с помощью моделей ИИ на основе открытых данных ECMWF
Команда специалистов системы прогнозирования погоды AIFS (Artificial Intelligence/Integrated Forecasting System) в Европейском центре среднесрочных прогнозов погоды (ECMWF) объявила, что теперь пользователи могут самостоятельно запускать модели прогноза погоды, использующие методы искусственного интеллекта (ИИ) и опирающиеся на открытые данные ECMWF.
Это позволит генерировать прогнозы на собственном компьютере пользователя, изучать методы прогнозирования с помощью ансамблей моделей и проводить сравнительный анализ моделей.
Установка python-пакетов традиционна:
Поддерживаются следующие модели прогнозирования погоды, использующие методы ИИ: Pangu-Weather, FourCastNet (версия 2), GraphCast, FuXi и Aurora.
В будущем ожидается поддержка системы AIFS. Пока можно получить готовые прогнозы, сделанные с помощью AIFS.
#погода #ИИ #python
Команда специалистов системы прогнозирования погоды AIFS (Artificial Intelligence/Integrated Forecasting System) в Европейском центре среднесрочных прогнозов погоды (ECMWF) объявила, что теперь пользователи могут самостоятельно запускать модели прогноза погоды, использующие методы искусственного интеллекта (ИИ) и опирающиеся на открытые данные ECMWF.
Это позволит генерировать прогнозы на собственном компьютере пользователя, изучать методы прогнозирования с помощью ансамблей моделей и проводить сравнительный анализ моделей.
Установка python-пакетов традиционна:
pip install ai-models
pip install ai-models-panguweather # Or another model
ai-models panguweather --input ecmwf-open-data
Поддерживаются следующие модели прогнозирования погоды, использующие методы ИИ: Pangu-Weather, FourCastNet (версия 2), GraphCast, FuXi и Aurora.
В будущем ожидается поддержка системы AIFS. Пока можно получить готовые прогнозы, сделанные с помощью AIFS.
#погода #ИИ #python
object-store-rs: интерфейс с сервисами хранения объектов и локальных файлов
Python-пакет object-store-rs (https://github.com/developmentseed/object-store-rs), разработанный компанией Development Seed, предоставляет унифицированный API для взаимодействия с сервисами хранения объектов и локальных файлов. Пакет обеспечивает простую и быструю интеграцию с такими сервисами хранения объектов, как Amazon S3, Google Cloud Storage, Azure Blob Storage, и S3-совместимыми API, например Cloudflare R2.
#python
Python-пакет object-store-rs (https://github.com/developmentseed/object-store-rs), разработанный компанией Development Seed, предоставляет унифицированный API для взаимодействия с сервисами хранения объектов и локальных файлов. Пакет обеспечивает простую и быструю интеграцию с такими сервисами хранения объектов, как Amazon S3, Google Cloud Storage, Azure Blob Storage, и S3-совместимыми API, например Cloudflare R2.
#python
GitHub
GitHub - developmentseed/obstore: Simple, fast integration with Amazon S3, Google Cloud Storage, Azure Storage, and S3-compliant…
Simple, fast integration with Amazon S3, Google Cloud Storage, Azure Storage, and S3-compliant APIs like Cloudflare R2 - developmentseed/obstore