Спутник ДЗЗ
2.94K subscribers
2.28K photos
132 videos
182 files
2.03K links
Человеческим языком о дистанционном зондировании Земли.

Обратная связь: @sputnikDZZ_bot
Download Telegram
Новые данные лидара GEDI: L4C Footprint Level Waveform Structural Complexity Index [ссылка]

Центр распределенной обработки данных Национальной лаборатории Оук-Ридж NASA (ORNL DAAC) выпустил новый набор данных космического лидара GEDI (Global Ecosystem Dynamics Investigation), который с 2019 года работает на борту Международной космической станции (МКС). Данные GEDI помогают исследователям понять, как изменения в структуре лесов влияют на климат Земли и как леса могут замедлить глобальное потепление.

Новые данные, GEDI L4C Footprint Level Waveform Structural Complexity Index, Version 2 (WSCI), относятся к структурной сложности лесного полога. Структурная сложность полога (canopy structural complexity, CSC) — это мера того, как листья, ветви и стволы распределены по горизонтальному и вертикальному пространству лесного полога. CSC является хорошим показателем качества среды обитания, видового разнообразия и функционирования экосистемы. CSC можно достаточно точно оценить по данным воздушных или наземных лидаров. Теперь к ним добавились данные наблюдений из космоса.

Для создания глобального набора данных на уровне “следов” (footprint) были использованы эмпирические модели, разработанные на основе более чем 800 000 оценок CSC, полученных с помощью воздушного лазерного сканирования и совместных измерений относительной высоты волновых форм GEDI уровня 2A для различных функциональных типов растений по всему миру. Оценки неопределенности представлены в виде интервалов прогнозирования с доверительной вероятностью 95% для каждого “следа”.

Функциональные типы растений включают листопадные широколиственные деревья, вечнозеленые широколиственные деревья, вечнозеленые игольчатые деревья, а также сочетание лугов, кустарников и лесов. Вместе с оценочными данными WSCI, которые представлены в 74 860 файлах данных формата HDF5 (.h5) и охватывают период с 17 апреля 2019 года по 16 марта 2023 года, продукт уровня 4C включает соответствующие метрики неопределенности, флаги качества и другую информацию о волновой форме GEDI уровня 2A для выбранной группы настройки алгоритмов продукта.

В ближайшее время будет опубликована 1-километровая версия продукта WSCI и обновлены ранее выпущенные продукты. Это будет сделано после того, как появятся свежие данные прибора GEDI после годичного перерыва в работе миссии — с марта 2023 по апрель 2024 года. Сначала будут созданы наборы данных более низкого уровня обработки (то есть продукты уровней 1 и 2), позже появятся продукты уровней 3 и 4. Продукты GEDI версии 3 также находятся в разработке и будут содержать улучшенную геолокацию и другие алгоритмические усовершенствования.

Данные о структурной сложности дадут экологам лучшее понимание видового разнообразия лесов и экосистемных процессов, а также могут дать представление о здоровье и функционировании лесов.

📊 На графике представлены значения индекса структурной сложности волновой формы (WSCI), полученных с помощью данных GEDI Level 4C над Восточной Амазонией. Более яркие цвета указывают на большую структурную сложность, более темные цвета — на меньшую сложность.

Как и другие наборы данных GEDI на уровне “следов”, данные WSCI содержит пробелы в своем охвате. В первую очередь, такие пробелы вызваны размещением прибора GEDI на МКС, орбита которой ограничивает наблюдение областями, находящимися в полосе между 51,6° северной и южной широты. Кроме того, наблюдения прибора доступны только вдоль трассы орбиты, которые образуют поперечный рисунок на поверхности Земли. Между трассами также имеются пробелы в покрытии.

Данные GEDI L4C Footprint Level Waveform Structural Complexity Index, Version 2 доступны в:

🌍 NASA Earthdata Search
🛢 ORNL DAAC

Вскоре данные должны появиться в ORNL DAAC Terrestrial Ecology Subsetting and Visualization Services (TESViS).

#лидар #лес #данные
Natural Lands Map

Лаборатория Land & Carbon Lab в сотрудничестве с Всемирным фондом дикой природы и компанией Systemiq разработала Natural Lands Map (NLM) — карту естественного земного покрова на 2020 год с пространственным разрешением 30 метров.

NLM разграничивает естественные и искусственные почвенно-растительные покровы. Для измерения преобразования естественного покрова использованы определения естественных экосистем и естественных лесов, принятые в рамках инициативы Accountability Framework Initiative (AFi).

Карта объединила глобальные и локальные данные. В первую очередь, это глобальные данные о растительном покрове 2020 года лаборатории GLAD Университета Мэриленда и данные ESA WorldCover 2020 года. Локальные данные добавлялись в уже полученную глобальную карту, где получали приоритет над глобальными данными.

Средняя общая точность карты составляет 91,2%. Районы с локальными данными в целом лучше отражают местные ландшафты. Проблемы с точностью по некоторым территориям и земным покровам связаны с недостатком соответствующих данных. Так, на момент публикации карты не существовало глобальных данных, разграничивающих естественные луга и пастбища, в результате чего классы естественной и искусственной короткой растительности (short vegetation) оказались неточными. Аналогичным образом, во многих странах Европейского союза и в России есть лесопосадки, но нет общедоступных данных о лесопосадках, которые помогли бы лучше различать естественные и посаженные леса.

Подробности о принятых определениях и технической стороне реализации NLM приведены в:

📖 SBTN Natural Lands Map – Technical Documentation

Компании могут использовать данные NLM, чтобы оценить, не привела ли их деятельность к обезлесению (деградации леса) после 2020 года. Для этого используется класс естественных лесов (natural forests) в NLM. Однако нужно учитывать различия в определении обезлесения, между NLM и другими документами, например, European Union Deforestation Regulation (EUDR). Подробная информация об этих различиях содержится в технической документации к NLM ⬆️, а также в AFi Operational Guidance on Applying the Definitions Related to Deforestation and Conversion.

Текущая версия карты находится в открытом доступе, имеет открытый исходный код, а также доступна на Google Earth Engine:

🛢 GitHub репозиторий
🌍 GEE: SBTN Natural Lands Map v1

#лес #данные #LULC
Оценка выбросов метана северными болотами

Центр данных NASA в Ок-Риджской национальной лаборатории (ORNL DAAC) выпустил набор данных Boreal Arctic Wetland Methane Emissions, 2002–2021, который представляет собой оценку выбросов метана бореально-арктическими болотами в еженедельном временном масштабе с 2002 по 2021 год с пространственным разрешением 0,5° x 0,5°.

Данные о выбросах метана водно-болотными угодьями, полученные с помощью вихревых ковариационных башен и камер (chambers), использовались для обучения и проверки модели машинного обучения. Обученная модель была использована для оценки выбросов метана в ячейках сетки, в которых есть водно-болотные угодья, расположенные выше 44° северной широты. Данные представлены в формате netCDF.

🔗 Доступ к данным + User Guide

🗺 Пространственное распределение усредненных по годам эмиссий метана болотными угодьями, с указанием мест наблюдения ⬇️.

📖Yuan, K., Li, F., McNicol, G., Chen, M., Hoyt, A., Knox, S., Riley, W. J., Jackson, R., & Zhu, Q. (2024). Boreal–Arctic wetland methane emissions modulated by warming and vegetation activity. Nature Climate Change, 14(3), 282–288. https://doi.org/10.1038/s41558-024-01933-3

#данные #CH4 #болота
Глобальные данные о приземной концентрации частиц PM2.5

В данных Global Annual PM2.5 Grids from MODIS, MISR, SeaWiFS and VIIRS Aerosol Optical Depth (AOD), v5.04 (1998 – 2022) представлены годовые глобальные приземные концентрации (в единицах микрограммов на кубический метр) мелкодисперсных частиц диаметром менее или равным 2,5 микрона (PM2.5). Данные получены спутниковыми приборами MODIS, MISR, SeaWiFS и VIIRS.

В наборе сочетаются данные об Aerosol Optical Depth, полученные с помощью нескольких спутниковых алгоритмов, и данные, представленные в виде сетки с разрешением 0,01° (около 1 км). Данные распространяются в виде файлов GeoTIFF и netCDF в проекции WGS84.

🔗 Страница данных

#атмосфера #данные
Новые данные спутников CYGNSS

Physical Oceanography DAAC NASA (PO.DAAC) выпустил этим летом несколько новых наборов данных, полученных спутниками группировки CYGNSS (Cyclone Global Navigation Satellite System):

🔹 L1 Calibrated Raw IF v1.0
🔹 тепловой поток поверхности океана L2 Ocean Surface Heat Flux V3.2
🔹 концентрация микропластика в океане L3 Ocean Microplastic Concentration V3.2
🔹 влажность почвы L3 Soil Moisture V3.2
🔹 ежемесячный набор данных Watermask L3 Monthly Watermask V3.1

Данные предоставляются в формате netCDF4 и имеют временной диапазон от 1 августа 2018 года до настоящего времени с приблизительной задержкой в 6 дней.

Кроме того, выпущены данные

🔹 Cyclone Global Navigation Satellite System (CYGNSS) Science Data Record (SDR) Version 3.2 (V3.2) Level 3 — скорость ветра с предоставлением в режиме, близком к реальному времени (NRT).

Эти данные распространяются в формате netCDF-4, и охватывают период с 1 августа 2018 года по настоящее время с приблизительной задержкой от 2 до 24 часов.

Группировка малых спутников CYGNSS, запущенная 15 декабря 2016 года, состоит из восьми аппаратов, и предназначена для измерения скорости приповерхностного ветра во внутреннем ядре тропических циклонов, но используются и в “сухопутных” приложениях (пример). Данные CYGNSS имеют высокое временное разрешение и охватывают тропические широты в полосе от 38° северной широты до 38° южной широты. Измерения осуществляются методом ГНСС-рефлектометрии, то есть рефлектометрии, использующей сигналы глобальных навигационных спутниковых систем — GPS, ГЛОНАСС, Beidou и т. п. Конкретно CYGNSS использует сигналы GPS.

📊 Пример данных CYGNSS Level 2 Ocean Surface Heat Flux Climate Data Record (CDR) о параметрах теплового потока поверхности океана с разрешением 25 км x 25 км, полученных прибором Delay Doppler Mapping Instrument на борту группировки спутников CYGNSS (источник).

#GNSSR #данные #океан
Сенсорно-независимые данные MODIS & VIIRS LAI/FPAR (2000–2022)

Набор пространственных данных Sensor-Independent MODIS & VIIRS LAI/FPAR CDR (2000–2022) охватывает важнейшие биофизические параметры: индекс листовой поверхности (Leaf Area Index, LAI) и долю фотосинтетически активной радиации (Fraction of Photosynthetically Active Radiation, FPAR или FAPAR*), необходимые для характеристики наземных экосистем.

При подготовке данных особое внимание уделялось ограничениям, имевшимся в существующих глобальных продуктах LAI/FPAR, в том числе, проблемам пространственно-временной согласованности и точности. Методика создания набора данных описана в:

📖 Pu, J., Yan, K., Roy, S., Zhu, Z., Rautiainen, M., Knyazikhin, Y., & Myneni, R. B. (2024). Sensor-independent LAI/FPAR CDR: reconstructing a global sensor-independent climate data record of MODIS and VIIRS LAI/FPAR from 2000 to 2022. Earth System Science Data, 16(1), 15–34. https://doi.org/10.5194/essd-16-15-2024

Данные создавались как сенсорно-независимые на основе стандартных продуктов LAI/FPAR Terra MODIS, Aqua MODIS и VIIRS. Они охватывают временной интервал с 2000 по 2022 год и содержат данные LAI/FPAR в различных пространственных разрешениях: 500 м, 5 км и 0,05° с шагами по времени 8 суток и два месяца. Набор данных доступен в синусоидальной проекции, а также в WGS 1984.

Доступ к данным:

🛢 Zenodo
🌍 Google Earth Engine

📊 Схема создания данных.


*FPAR или FAPAR (Fraction of Absorbed Photosynthetically Active Radiation) — доля падающей фотосинтетически активной радиации (400–700 нм), поглощаемой растительностью.

#данные #климат #GEE
FABDEM V1.2

FABDEM (Forest And Buildings removed Copernicus DEM) — это глобальная карта высот, которая удаляет смещения высоты зданий и деревьев из цифровой модели рельефа (ЦМР) Copernicus GLO 30. Данные доступны с шагом сетки 1” (примерно 30 м на экваторе) для всего земного шара.

FABDEM V1.2 — обновленная версия FABDEM V1.0. Изменения подробно описаны в файле FABDEM-V1-2 Changelog.pdf, приложенном к данным. Вместе с данными поставляется geojson тайлов FABDEM.

🛢 FABDEM V1.2

Данные FABDEM распространяются по лицензии Creative Commons “CC BY-NC-SA 4.0”.

📖 Сравнение FABDEM V1.2 и FABDEM V1.0.

#DEM #данные
Глобальные карты торфяных болот

🗺 Global Peatland Map 2.0 создана на основе данных Грейфсвальдского центра болот (Greifswald Mire Centre) за 2022 год. Данные имеют пространственное разрешение 1 км.

🛢 Скачать данные (GeoTIFF)
🌍 Global Peatland Map 2.0 на Google Earth Engine

🗺 Карта Global Peatland Fractional Coverage показывает долю площади пикселя, занятую торфяными болотами (2021 год). Карта построена с помощью методов машинного обучения и имеет пространственное разрешение 5’ (≈9.26 км на экваторе).

🛢 Скачать Peat-ML Dataset (NetCDF)
🌍 Global Peatland Fractional Coverage на GEE

📖 Методика

#данные #болота #GEE
This media is not supported in your browser
VIEW IN TELEGRAM
Границы проектов углеродных компенсаций

Углеродные компенсации (сarbon offsets) являются одним из инструментов, позволяющих смягчить последствия антропогенных выбросов парниковых газов. Проекты углеродных компенсаций иногда подвергаются критике за преувеличение компенсационных показателей. Проверка эффективности проектов осложняется отсутствием общедоступных пространственных данных об их границах.

В 📖 работе описаны методы создания базы данных о границах проектов по углеродной компенсации выбросов. В базе содержится информация о местоположении 575 проектов углеродной компенсации в 55 странах. Данные были собраны с помощью скрапинга из реестров углеродных проектов (75,3% данных), а также ручной привязки и оцифровки (22,1%). Использовались данные из реестров Verra Registry, American Carbon Registry, Climate Action Reserve, Gold Standard, EcoRegistry и BioCarbon Standard. Записи в базе данных включают проекты предотвращения обезлесения, лесовосстановления и лесоразведения, а также улучшения управления лесами. Оценка качества процесса геопривязки и оцифровки показала высокую степень точности (метрика intersection over union составила 0,98 ± 0,015).

🛢 Данные Carbon Offset Project Boundaries на Zenodo.
🌍 Carbon Offset Project Boundaries на GEE

#GHG #данные #GEE
Новые данные наземных лидаров

Коллекция данных наземных и воздушных лидаров Центра данных NASA в Ок-Риджской национальной лаборатории (ORNL DAAC) пополнилась данными Blueflux: Terrestrial Lidar Scans of Mangrove Forests, Everglades, FL, USA, 2022-2023 (🔗 ссылка).

Новый набор данных содержит облака точек трехмерной структуры и объема мангровых лесов, собранные с 10 участков в Национальном парке Эверглейдс (шт. Флорида, США). Данные собраны в ходе в марте 2022, октябре 2022 и марте 2023 года с помощью наземного лазерного сканера RIEGL VZ-400i — неразрушающего количественного метода измерения и мониторинга трехмерной структуры леса. Данные представлены в формате LAS (*.las).

📸 Вид на экосистему мангровых зарослей с борта исследовательского самолета, пролетающего над южной Флоридой во время одного из этапов полевой кампании Blueflux (источник).

#лидар #данные