VIRSUN
7.18K subscribers
1.45K photos
819 videos
5 files
908 links
📥 در کانال @rss_ai_ir هر روز: 🔹 جدیدترین خبرهای AI و فناوری
🗯اولویت ما هوش مصنوعی در صنعت میباشد اما نیم نگاهی به موارد دیگر در این زمینه داریم

ارتباط با ادمین 1:
@Ad1_rss_ai_ir

آدرس گروه
https://t.iss.one/rss_ai_ir_group
Download Telegram
🔥 مدل NanoBanana برای علوم زمین (Geoscience): زمانی که مدل‌های Image-to-Image به ابزار علمی تبدیل می‌شوند 🌍🛰️

کاربر خلاقی ایده‌ای عالی را آزمایش کرده — استفاده از NanoBanana برای تحلیل محیطی واقعی: تولید نقشه حرارتی آسیب چمن (Grass Damage Heatmap) از عکس‌های هوایی پارک‌ها 🌿


🧩 پرامپت نهایی برای استفاده مستقیم:

Grass Damage Heatmap — Overlay Only

Goal
Return the original aerial photo with a high-contrast damage heatmap drawn only on grass. No side-by-side, no crops, no extra files.

Input
/mnt/data/333064BC-C638-4C4E-A255-DA277B7CD2AC.jpeg

1) Preprocess (robust color)
• Gray-world white balance and local illumination normalization (shadow-robust).
• Bilateral filter to reduce noise while preserving edges.

2) Grass segmentation (tighter)
• Use RGB vegetation indices to drive the mask:
ExG = 2G − R − B, VARI = (G − R) / (G + R − B + 1e-6).
Keep pixels with (ExG > p60_exg OR VARI > p60_vari) AND HSV hue in [70°,150°] OR low-chroma yellow/olive under shadow normalization.
• Explicitly exclude: tree canopies + shadows, bare soil/paths, playgrounds, buildings/roads/cars.
• Morphology: close→open to fill small holes; remove speckles < 0.5 m².

3) Damage score (shadow-robust, multi-cue)

damage_raw = w1*(1 - norm(VARi))
+ w2*yellow_brownness // hue shift 15°–70°, low S
+ w3*thin/patchy texture // low local NDVI proxy & high LBP contrast
+ w4*exposed-soil likelihood

Use w1=0.4, w2=0.3, w3=0.2, w4=0.1. Clamp to [0,1].
Distance-from-path prior: don’t boost 1–2 m fringe unless the damaged region extends ≥3 m into turf.

4) Adaptive contrast (per-lawn)
• Split grass into connected polygons (“lawns”).
• For each polygon, percentile scale p5→0, p95→1 (clip).
• Hide scores < 0.30.

5) Overlay style (make hotspots pop)
• Colormap (no green): purple → orange → yellow/white (plasma-like).
0.30–0.49 = purple, 0.50–0.74 = orange, ≥0.75 = yellow/white.
• Opacity on grass: 0.85.
• Non-grass context: grayscale at 40–45% brightness.
• Contours at 0.50 and 0.75 (white, 1–2 px).
• High-confidence “bald spots” (≥0.85 and area ≥ 3 m²): add thin black outline.

6) Legend (compact)
• “Grass damage (≥30%)” bar with ticks at 30/50/75/100; place top-right, non-occluding.

7) Output
• One PNG at native resolution: original image + overlay.



Ultra-short drop-in

“Overlay only. Segment grass via ExG/VARI + HSV; exclude trees/paths/buildings; shadow-robust. Score damage from (1−VARI), yellow/brownness, patchy texture, soil; apply path-fringe guard. Per-lawn percentile remap (p5→0, p95→1); hide <0.30. Draw purple→orange→yellow/white heatmap at 0.85 opacity on grass; rest grayscale 45%. Add white contours at 0.50/0.75 and black outlines for ≥0.85 ‘bald spots’. Return one PNG.”

---

📡 @rss_ai_ir
#هوش_مصنوعی #NanoBanana #Geoscience #VisionAI #ImageToImage #GIS #RemoteSensing #EnvironmentalAI #Heatmap
2
🎬 پشت‌صحنه‌سازی با نانابانانا؛ وقتی مدل خودش تبدیل به کارگردان می‌شود

✳️این روزها یک «ترفند» دربارهٔ نانابانانا (Gemini 3 Pro Image) حسابی دست‌به‌دست می‌شود:

یک عکس می‌دهید و می‌گویید «پشت‌صحنه‌اش را بساز» — و مدل همان لحظه صحنه‌ای می‌سازد با پردهٔ سبز، نورها، اپراتورها، مانیتور کارگردان و حتی کابل‌های صحنه.

اما این فقط ۱۰٪ توانایی واقعی بانانا است.

✳️مدل به‌طور شگفت‌انگیزی دربارهٔ سینما و ویدئوپرو–داکشن اطلاعات دارد — از جنس نورها و نوع کی‌لایت گرفته تا دیفیوزر، فاصلهٔ کانونی، موقعیت دوربین، راکِر، ISO، عمق میدان و حتی اصطلاحات نورپردازی حرفه‌ای.

بنابراین می‌توانید هر فریم از فیلم، تبلیغ یا حتی ویدئوی عروسی را آپلود کنید و بگویید:
generate a realistic behind the scene for this film scene, show me where the camera and lights are placed, use arrows to label each light, what type, what settings

و بانانا:
📌 جای دقیق دوربین را می‌زند
📌 نوع نورها را حدس می‌زند
📌 فلش و برچسب می‌گذارد
📌 حتی دیاگرام کامل نورپردازی رسم می‌کند

نتیجه؟
کلاس‌های فیلمبرداری از شدت استرس عرق سرد می‌کنند، تیم‌های Previz به فکر فرو رفته‌اند، و نورپردازها احتمالاً امروز کمی بیشتر می‌نوشند.

⛔️بخشی از خروجی‌ها کاملاً دقیق نیستند، اما نکتهٔ مهم اینجاست:
مدل معمولاً ستاپ کلی نور را درست تشخیص می‌دهد.
و این یعنی یک ابزار فوق‌العاده برای فیلمسازها، تبلیغات‌چی‌ها، CG artists و حتی دانشجویان سینما.

@rss_ai_ir

#هوش_مصنوعی #نانابانانا #Gemini #تولید_محتوا #فیلمسازی #پشت_صحنه #نورپردازی #ویدئوپرو_داکشن #AI #سینما #PreViz #ImageToImage #مولتی‌مودال #GoogleAI #مدل_تولیدی
👍3🔥2👏1