This media is not supported in your browser
VIEW IN TELEGRAM
🐼مدل Pixel-Dense Embedding در مدل FlowFeat 🐼
محققان دانشگاه مونیخ (TUM Vision) مدل جدیدی به نام FlowFeat معرفی کردهاند — یک نمایش ویژگی چندوظیفهای و با وضوح بالا که قادر است توزیع حرکات ممکن در تصویر را بهصورت بردارهای فشرده (Embedding) نمایش دهد.
🧠 ایدهی کلیدی:
بهجای نمایش تنها یک حرکت برای هر پیکسل، FlowFeat چندین حرکت محتمل (motion profiles) را مدل میکند. این کار باعث افزایش دقت در وظایفی مانند Optical Flow، تخمین عمق، و درک صحنههای پویا میشود.
💡 ویژگیها:
♻️دقت بالا در پیشبینی حرکات ظریف در ویدیو
♻️مناسب برای چندین وظیفه (multi-task representation)
♻️نیاز محاسباتی پایین با حفظ جزئیات
♻️مبتنی بر معماری DINOv3 Backbone
📄 مقاله:
arxiv.org/pdf/2511.07696
💻 پروژه:
tum-vision.github.io/flowfeat
📦 کد منبع:
github.com/tum-vision/flowfeat
#FlowFeat #ComputerVision #MotionEstimation #DeepLearning #Neural #AI
محققان دانشگاه مونیخ (TUM Vision) مدل جدیدی به نام FlowFeat معرفی کردهاند — یک نمایش ویژگی چندوظیفهای و با وضوح بالا که قادر است توزیع حرکات ممکن در تصویر را بهصورت بردارهای فشرده (Embedding) نمایش دهد.
🧠 ایدهی کلیدی:
بهجای نمایش تنها یک حرکت برای هر پیکسل، FlowFeat چندین حرکت محتمل (motion profiles) را مدل میکند. این کار باعث افزایش دقت در وظایفی مانند Optical Flow، تخمین عمق، و درک صحنههای پویا میشود.
💡 ویژگیها:
♻️دقت بالا در پیشبینی حرکات ظریف در ویدیو
♻️مناسب برای چندین وظیفه (multi-task representation)
♻️نیاز محاسباتی پایین با حفظ جزئیات
♻️مبتنی بر معماری DINOv3 Backbone
📄 مقاله:
arxiv.org/pdf/2511.07696
💻 پروژه:
tum-vision.github.io/flowfeat
📦 کد منبع:
github.com/tum-vision/flowfeat
#FlowFeat #ComputerVision #MotionEstimation #DeepLearning #Neural #AI