Российское гидрометеорологическое общество (РГМО)
680 subscribers
11.3K photos
1.86K videos
149 files
5.56K links
Общероссийская общественная организация Российское гидрометеорологическое общество (РГМО)

сайт https://rgmo.net/
Download Telegram
Forwarded from Спутник ДЗЗ
Обзор методов извлечения дорог из данных дистанционного зондирования высокого разрешения с помощью глубокого обучения

📖 Liu, R., Wu, J., Lu, W., Miao, Q., Zhang, H., Liu, X., Lu, Z., & Li, L. (2024). A Review of Deep Learning-Based Methods for Road Extraction from High-Resolution Remote Sensing Images. Remote Sensing, 16(12), 2056. https://doi.org/10.3390/rs16122056

В статье представлен систематический обзор методов извлечения дорог из данных дистанционного зондирования Земли (ДЗЗ) высокого разрешения при помощи глубокого обучения. В зависимости от типа аннотированных данных, методы глубокого обучения делятся на обучение с учителем, без учителя и с частичным привлечением учителя (supervised learning, unsupervised learning, semi-supervised learning), каждый из которых подразделяется на более детальные подкатегории. Методы подвергаются сравнительному анализу на основе их принципов, преимуществ и ограничений. Кратко описаны метрики, используемые для оценки эффективности моделей выделения дорог, и наборы данных изображений ДЗЗ высокого разрешения, применяемые для выделения дорог (DeepGlobe, Massachusetts и др.). Обсуждаются основные проблемы и перспективы использования развития методов выделения дорожной сети по данным ДЗЗ.

📸 Классификация методов выделения дорог

#обзор #нейронки
Обзор методов интерпретируемого машинного обучения для прогнозирования погоды и климата

В последнее время передовые модели машинного обучения достигли высокой точности прогнозирования погоды и климата. Большинство из этих моделей является “черными ящиками”: они выдают результаты, не позволяя пользователю заглянуть внутрь, чтобы разобраться, как именно был получен тот или иной прогноз. Поэтому важную роль приобретает развитие интерпретируемых методов машинного обучения.

В 📖 статье рассмотрены современные подходы к интерпретируемому машинному обучению, применяемые для метеорологических прогнозов. Подходы делятся на две группы: (1) методы интерпретации post-hoc, объясняющие предварительно обученные модели, такие как методы атрибуции на основе возмущений, теории игр и градиентные методы; (2) разработка интерпретируемых моделей с нуля с помощью таких архитектур, как ансамбли деревьев или объясняемые (explainable) нейронные сети. Коротко описан каждый метод, и то как именно он позволяет понять прогнозы, раскрывая метеорологические взаимосвязи, улавливаемые машинным обучением. В финале работы обсуждаются проблемы исследования и перспективы на будущее.

📖 Yang, R., Hu, J., Li, Z., Mu, J., Yu, T., Xia, J., Li, X., Dasgupta, A., & Xiong, H. (2024). Interpretable machine learning for weather and climate prediction: A review. Atmospheric Environment, 338, 120797. https://doi.org/10.1016/j.atmosenv.2024.120797

#нейронки #погода #ИИ #климат