🧠 Инструменты для искусственного интеллекта
Собрание полезных AI-инструментов и ресурсов для разработчиков, исследователей и энтузиастов. Участвуйте в развитии сообщества, добавляя новые сервисы и улучшая коллекцию.
🚀 Основные моменты:
- Широкий выбор AI-инструментов по различным категориям.
- Открытое сообщество для совместной работы и улучшения.
- Возможность вносить свой вклад через Pull Requests.
📌 GitHub: https://github.com/Hyraze/collective-ai-tools
#python
Собрание полезных AI-инструментов и ресурсов для разработчиков, исследователей и энтузиастов. Участвуйте в развитии сообщества, добавляя новые сервисы и улучшая коллекцию.
🚀 Основные моменты:
- Широкий выбор AI-инструментов по различным категориям.
- Открытое сообщество для совместной работы и улучшения.
- Возможность вносить свой вклад через Pull Requests.
📌 GitHub: https://github.com/Hyraze/collective-ai-tools
#python
GitHub
GitHub - Hyraze/collective-ai-tools: AI tools platform with 800+ curated tools, built-in workspace tools, and job board for developers…
AI tools platform with 800+ curated tools, built-in workspace tools, and job board for developers and researchers. - Hyraze/collective-ai-tools
❤8👍3🔥2
🛠️ Улучшаем отладку с пользовательскими типами
Этот репозиторий помогает отображать пользовательские типы и контейнеры в отладчике LLDB, делая их более понятными. С помощью кастомных функций и синтетических провайдеров вы сможете легко видеть значения ваших объектов и контейнеров.
🚀Основные моменты:
- Поддержка пользовательских типов и контейнеров в LLDB.
- Использование Python для настройки отображения.
- Примеры для классов и контейнеров, таких как
- Удобное взаимодействие с отладчиком через
📌 GitHub: https://github.com/codeinred/lldb_user_types
#python
Этот репозиторий помогает отображать пользовательские типы и контейнеры в отладчике LLDB, делая их более понятными. С помощью кастомных функций и синтетических провайдеров вы сможете легко видеть значения ваших объектов и контейнеров.
🚀Основные моменты:
- Поддержка пользовательских типов и контейнеров в LLDB.
- Использование Python для настройки отображения.
- Примеры для классов и контейнеров, таких как
example::date и example::span.- Удобное взаимодействие с отладчиком через
.lldbinit.📌 GitHub: https://github.com/codeinred/lldb_user_types
#python
❤7🔥4👍3
1️⃣0️⃣0️⃣0️⃣ БЕСПЛАТНЫХ приложений, которые можно развернуть прямо у себя на сервере. На GitHub нашли настоящую сокровищницу!
50+ категорий: от аналитики и бронирований до автоматизации рутины и чтения книг.
Внутри — сотни инструментов под любые задачи: файлообменники, парсеры, сервисы для мониторинга и даже решения для ресторанов и отелей.
Всё работает локально — данные остаются только у вас, ничего не уходит разработчикам или в сеть.
https://github.com/awesome-selfhosted/awesome-selfhosted
@pythonl
50+ категорий: от аналитики и бронирований до автоматизации рутины и чтения книг.
Внутри — сотни инструментов под любые задачи: файлообменники, парсеры, сервисы для мониторинга и даже решения для ресторанов и отелей.
Всё работает локально — данные остаются только у вас, ничего не уходит разработчикам или в сеть.
https://github.com/awesome-selfhosted/awesome-selfhosted
@pythonl
❤11👍6🔥5
🐍 Как ускорить ML-эксперименты на Python без настройки железа
Вы пишете на Python, используете PyTorch, TensorFlow или JAX — и тратите часы на установку драйверов, CUDA и зависимостей, вместо того чтобы просто запустить обучение.
В immers.cloud мы убрали эту рутину:
💰 Посекундная тарификация: тарифы от 23 руб/час, платите только за время, когда сервер реально работает.
⚡️ Быстрый старт: нужный сервер поднимается за пару минут.
📈 Гибкость и масштабируемость: 13 моделей видеокарт на выбор, от RTX 3090 до флагманских Н200.
🔧 Удобство: готовые образы для ваших задач, чтобы не тратить время на настройку.
А если нужно прерваться — можно просто заморозить ВМ с помощью функции Shelve: данные сохранятся, а платить за простои не придется.⠀
🔗 Начните сейчас и получите +20 % к первому пополнению!
Вы пишете на Python, используете PyTorch, TensorFlow или JAX — и тратите часы на установку драйверов, CUDA и зависимостей, вместо того чтобы просто запустить обучение.
В immers.cloud мы убрали эту рутину:
💰 Посекундная тарификация: тарифы от 23 руб/час, платите только за время, когда сервер реально работает.
⚡️ Быстрый старт: нужный сервер поднимается за пару минут.
📈 Гибкость и масштабируемость: 13 моделей видеокарт на выбор, от RTX 3090 до флагманских Н200.
🔧 Удобство: готовые образы для ваших задач, чтобы не тратить время на настройку.
А если нужно прерваться — можно просто заморозить ВМ с помощью функции Shelve: данные сохранятся, а платить за простои не придется.⠀
🔗 Начните сейчас и получите +20 % к первому пополнению!
❤7🔥6🤩4
🎙️ VoxCPM: Революционный TTS для естественного синтеза речи
VoxCPM — это инновационная система синтеза речи без токенизации, обеспечивающая контекстуально осознанное создание речи и высококачественное клонирование голоса. Она использует диффузионную архитектуру для генерации непрерывных звуковых представлений, что позволяет достигать высокой выразительности и стабильности.
🚀 Основные моменты:
- Контекстуально осознанная генерация речи с естественным звучанием.
- Точное клонирование голоса с минимальным количеством образцов.
- Высокая эффективность синтеза, поддержка потоковой передачи.
📌 GitHub: https://github.com/OpenBMB/VoxCPM
@pythonl
VoxCPM — это инновационная система синтеза речи без токенизации, обеспечивающая контекстуально осознанное создание речи и высококачественное клонирование голоса. Она использует диффузионную архитектуру для генерации непрерывных звуковых представлений, что позволяет достигать высокой выразительности и стабильности.
🚀 Основные моменты:
- Контекстуально осознанная генерация речи с естественным звучанием.
- Точное клонирование голоса с минимальным количеством образцов.
- Высокая эффективность синтеза, поддержка потоковой передачи.
📌 GitHub: https://github.com/OpenBMB/VoxCPM
@pythonl
❤5🔥5👍4😁1
Media is too big
VIEW IN TELEGRAM
Python 3.14 вышел 7 октября 2025 года. Это новый стабильный релиз, который содержит как изменения в самом языке, так и улучшения в реализации, стандартной библиотеке, отладке и взаимодействии с многопоточностью.
Ниже - обзор ключевых нововведений, их смысла, применимости и возможных подводных камней.
- Отложенная (ленивая) оценка аннотаций - теперь аннотации не вычисляются сразу, что уменьшает накладные расходы.
- Поддержка нескольких интерпретаторов в рамках одного процесса через новый модуль.
- Новый синтаксис шаблонных строк (t-strings), который даёт больше контроля над статической и интерполированной частью.
- Более информативные сообщения об ошибках (например, подсказки для опечаток в ключевых словах).
- Поддержка формата сжатия Zstandard в стандартной библиотеке.
- Улучшенные возможности для отладки и профилирования, в том числе подключение к живому процессу без остановки.
- Улучшения в
asyncio — команды для визуализации и диагностики задач, стеков ожидания и зависимостей. - Уменьшение пауз сборщика мусора (gc) через инкрементальный сбор.
- Подсветка синтаксиса и автодополнение модулей в интерактивном режиме (REPL) по умолчанию.
Ленивые аннотации - deferred evaluation of annotations
Раньше аннотации (для типов, документации, подсказок) могли вызывать вычисления прямо при определении функции или класса. Теперь они хранятся в виде «ленивых» структур и вычисляются по надобности. Это снижает накладные расходы на загрузку кода, особенно если аннотации сложные или содержат много forward-ссылок.
Есть модуль
annotationlib, который позволяет исследовать аннотации программно и выбирать формат их получения — строки, объекты или отложенные ссылки.Когда это особенно помогает:
- большие фреймворки, генерация кода, ORM, библиотеки с множеством аннотаций;
- ускорение импорта при старте приложений;
- уменьшение накладных расходов при работе с типами.
Что проверить при миграции:
- код, использующий
__annotations__ напрямую, может требовать адаптации; - убедитесь, что сторонние библиотеки, работающие с аннотациями, поддерживают новый формат.
Несколько интерпретаторов (subinterpreters)
Теперь в Python можно запускать несколько независимых интерпретаторов внутри одного процесса (модуль `concurrent.interpreters`).
Преимущества:
- изоляция между интерпретаторами (отдельная память, отдельный GIL);
- параллелизм на многоядерных системах;
- меньше накладных расходов, чем при использовании
multiprocessing. Ограничения:
- не все C-расширения поддерживают мультиинтерпретацию;
- коммуникация между интерпретаторами требует явных каналов (очереди, сообщения).
Это даёт реальную возможность распараллеливания CPU-задач без запуска отдельных процессов.
Template string literals (t-strings)
Новое синтаксическое средство — префикс
t перед строкой, аналогично f'...'. Результат — объект
Template, который хранит текст и вставки по отдельности.
variety = 'Stilton'
template = t'Try some {variety} cheese!'
- Подробности
- Скачать
- Видеообзор
@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
❤20🔥10👍9
🎧 MiMo Audio: Инновации в аудио языковых моделях
MiMo Audio предлагает передовые аудио языковые модели, способные к обучению с минимальным количеством примеров. С использованием более 100 миллионов часов данных, модель демонстрирует выдающиеся результаты в задачах распознавания речи и аудиоанализа, а также в генерации речи. MiMo-Audio-7B-Base устанавливает новые стандарты в открытых моделях.
🚀Основные моменты:
- Поддержка нескольких аудио задач с минимальным обучением.
- Высокая производительность в распознавании речи и аудио понимании.
- Генерация реалистичной речи для различных форматов.
- Открытый доступ к моделям через Hugging Face.
📌 GitHub: https://github.com/XiaomiMiMo/MiMo-Audio
@pythonl
MiMo Audio предлагает передовые аудио языковые модели, способные к обучению с минимальным количеством примеров. С использованием более 100 миллионов часов данных, модель демонстрирует выдающиеся результаты в задачах распознавания речи и аудиоанализа, а также в генерации речи. MiMo-Audio-7B-Base устанавливает новые стандарты в открытых моделях.
🚀Основные моменты:
- Поддержка нескольких аудио задач с минимальным обучением.
- Высокая производительность в распознавании речи и аудио понимании.
- Генерация реалистичной речи для различных форматов.
- Открытый доступ к моделям через Hugging Face.
📌 GitHub: https://github.com/XiaomiMiMo/MiMo-Audio
@pythonl
❤11🔥7👍5
⚡ Наглядное сравнение скорости нового Python 3.14 с предыдущей версией
Теперь Python может использовать все ядра процессора так же эффективно, как C++ или Go - без сложных обходных путей и накладных расходов.
Многопоточность стала быстрее мультипроцессинга - впервые в истории Python.
Главное - новая сборка позволяет работать без GIL (Global Interpreter Lock), что меняет всё.
Как вы наверное знаете, GIL - это глобальная блокировка интерпретатора, которая позволяет в каждый момент времени исполнять только один поток байткода Python, даже если у тебя много ядер.
Раньше поэтому многопоточность в Python фактически не работала.
🔄 Как обходили GIL
До сих пор стандартный способ распараллеливания 0 мультипроцессинг.
Каждый процесс - свой экземпляр интерпретатора со своим GIL.
Минусы такого подхода: каждая копия имеет отдельную память, данные нужно сериализовать при передаче — большие накладные расходы.
🚀 Что меняется в 3.14
В новой версии можно отключить GIL, и потоки теперь работают в общем адресном пространстве.
Общий доступ к памяти + никакой сериализации → значительное ускорение:
многопоточность теперь оказывает на ~33 % быстрее, чем мультипроцессинг.
📈 Эксперименты из репозитория koenvo/python-experiments/free-threading
- Продемонстрировано, что без GIL потоки действительно ускоряют работу задач с интенсивной синхронизацией и доступом к общей памяти.
- Показаны сравнения, где многопоточные версии (с отключённым GIL) часто превосходят мультипроцессные аналоги по времени выполнения.
- Тесты охватывают разные сценарии: CPU-нагрузки, обмен данными между потоками, циклы с синхронизацией.
- Репозиторий служит “proof of concept” — демонстрация, что free-threading действительно работает и приносит выгоду.
💡 Почему это важно
- Теперь реальная многопоточность в Python становится возможной и эффективной.
- Это особенно актуально для библиотек и фреймворков: ожидается, что PyTorch, NumPy и другие скоро получат поддержку free-threading.
- Уменьшаются накладные расходы на межпроцессное взаимодействие, улучшается масштабируемость на многопроцессорных системах.
Вот реальные примеры:
https://github.com/koenvo/python-experiments/tree/main/free-threading
@pythonl
Теперь Python может использовать все ядра процессора так же эффективно, как C++ или Go - без сложных обходных путей и накладных расходов.
Многопоточность стала быстрее мультипроцессинга - впервые в истории Python.
Главное - новая сборка позволяет работать без GIL (Global Interpreter Lock), что меняет всё.
Как вы наверное знаете, GIL - это глобальная блокировка интерпретатора, которая позволяет в каждый момент времени исполнять только один поток байткода Python, даже если у тебя много ядер.
Раньше поэтому многопоточность в Python фактически не работала.
🔄 Как обходили GIL
До сих пор стандартный способ распараллеливания 0 мультипроцессинг.
Каждый процесс - свой экземпляр интерпретатора со своим GIL.
Минусы такого подхода: каждая копия имеет отдельную память, данные нужно сериализовать при передаче — большие накладные расходы.
🚀 Что меняется в 3.14
В новой версии можно отключить GIL, и потоки теперь работают в общем адресном пространстве.
Общий доступ к памяти + никакой сериализации → значительное ускорение:
многопоточность теперь оказывает на ~33 % быстрее, чем мультипроцессинг.
📈 Эксперименты из репозитория koenvo/python-experiments/free-threading
- Продемонстрировано, что без GIL потоки действительно ускоряют работу задач с интенсивной синхронизацией и доступом к общей памяти.
- Показаны сравнения, где многопоточные версии (с отключённым GIL) часто превосходят мультипроцессные аналоги по времени выполнения.
- Тесты охватывают разные сценарии: CPU-нагрузки, обмен данными между потоками, циклы с синхронизацией.
- Репозиторий служит “proof of concept” — демонстрация, что free-threading действительно работает и приносит выгоду.
💡 Почему это важно
- Теперь реальная многопоточность в Python становится возможной и эффективной.
- Это особенно актуально для библиотек и фреймворков: ожидается, что PyTorch, NumPy и другие скоро получат поддержку free-threading.
- Уменьшаются накладные расходы на межпроцессное взаимодействие, улучшается масштабируемость на многопроцессорных системах.
Вот реальные примеры:
https://github.com/koenvo/python-experiments/tree/main/free-threading
@pythonl
👍28❤14🔥8
🌐 DeepMind представила URL Context — теперь можно извлекать данные с любой веб-страницы, PDF или картинки просто по ссылке!
⚡ Что умеет:
- Подтягивает данные с до 20 URL за один запрос
- Никакой настройки — просто вставляешь ссылки в промпт
- Оплата только за токены, без доп. стоимости за инструмент
💡 Возможности:
▸ Вытаскивать цены, имена, ключевые факты из статей
▸ Сравнивать PDF, отчёты или статьи
▸ Генерировать резюме, посты и документы на основе разных источников
▸ Анализировать GitHub-репозитории и техдоки
👉 URL Context превращает LLM в универсальный инструмент для работы с реальными данными в сети.
https://ai.google.dev/gemini-api/docs/url-context?hl=ru
⚡ Что умеет:
- Подтягивает данные с до 20 URL за один запрос
- Никакой настройки — просто вставляешь ссылки в промпт
- Оплата только за токены, без доп. стоимости за инструмент
💡 Возможности:
▸ Вытаскивать цены, имена, ключевые факты из статей
▸ Сравнивать PDF, отчёты или статьи
▸ Генерировать резюме, посты и документы на основе разных источников
▸ Анализировать GitHub-репозитории и техдоки
👉 URL Context превращает LLM в универсальный инструмент для работы с реальными данными в сети.
https://ai.google.dev/gemini-api/docs/url-context?hl=ru
❤13👍6🔥4
💾🎉 copyparty - ваш файловый сервер на любом устройстве
Copyparty позволяет легко превратить любое устройство в файловый сервер с поддержкой возобновляемых загрузок и скачиваний через веб-браузер. Работает на Python и поддерживает различные протоколы, включая HTTP, WebDAV и FTP.
🚀Основные моменты:
- Поддержка множества протоколов для доступа к файлам.
- Удобный интерфейс для загрузки и управления файлами.
- Возможность создания временных ссылок для обмена файлами.
- Поддержка мобильных приложений для Android и iOS.
📌 GitHub: https://github.com/9001/copyparty
#python
Copyparty позволяет легко превратить любое устройство в файловый сервер с поддержкой возобновляемых загрузок и скачиваний через веб-браузер. Работает на Python и поддерживает различные протоколы, включая HTTP, WebDAV и FTP.
🚀Основные моменты:
- Поддержка множества протоколов для доступа к файлам.
- Удобный интерфейс для загрузки и управления файлами.
- Возможность создания временных ссылок для обмена файлами.
- Поддержка мобильных приложений для Android и iOS.
📌 GitHub: https://github.com/9001/copyparty
#python
❤18👍2🔥1😱1
This media is not supported in your browser
VIEW IN TELEGRAM
🚀 PyApp: Упрощение создания Python приложений
PyApp — это обертка для Python-приложений, позволяющая им самостоятельно загружаться во время выполнения. Она упрощает создание автономных бинарных файлов для различных платформ и предлагает управление командами, включая автоматические обновления.
🚀 Основные моменты:
- Создание самостоятельных бинарников для всех платформ
- Управляющие команды для функциональности, включая обновления
- Конфигурируемое поведение на этапе выполнения
📌 GitHub: https://github.com/ofek/pyapp
@pythonl
#python
PyApp — это обертка для Python-приложений, позволяющая им самостоятельно загружаться во время выполнения. Она упрощает создание автономных бинарных файлов для различных платформ и предлагает управление командами, включая автоматические обновления.
🚀 Основные моменты:
- Создание самостоятельных бинарников для всех платформ
- Управляющие команды для функциональности, включая обновления
- Конфигурируемое поведение на этапе выполнения
📌 GitHub: https://github.com/ofek/pyapp
@pythonl
#python
❤12👍8🤩3
This media is not supported in your browser
VIEW IN TELEGRAM
Забудь про грядки и полив — теперь ферма работает на Python. Ты управляешь роботами, автоматизируешь процессы и наблюдаешь, как код превращается в урожай.
Вместо мотыги - код, вместо удобрений - алгоритмы.
Это не симулятор фермера, а тренажёр программиста с юмором и логикой.
- Всё управление через код - роботы выполняют твои Python-команды;
- Обучение встроено в геймплей — осваиваешь основы без нудных туториалов;
- Без уровней и доната - ферма растёт вместе с твоими навыками;
- Есть русский язык и IntelliSense, можно писать даже из VS Code;
У игры уже 95% положительных отзывов в Steam.
Игра превращает обучение Python в чистое удовольствие - просто запускаешь и начинаешь “программировать урожай”.
👉 Играть
Please open Telegram to view this post
VIEW IN TELEGRAM
❤48🔥21👍11🤩3
This media is not supported in your browser
VIEW IN TELEGRAM
Это огромное обновление: раньше, даже если вы писали многопоточный код, Python выполнял только один поток за раз, и вы не получали прироста производительности.
Теперь же Python способен реально выполнять потоки параллельно.
И библиотека uv уже полностью поддерживает эту возможность!
Посмотрите сравнение скорости на прикрепленном видео.
@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
❤29👍12🔥9
🎨🚀 HunyuanImage-2.1: Эффективная модель диффузии для генерации изображений
HunyuanImage-2.1 — это мощная модель для создания высококачественных изображений (2048x2048) на основе текстовых описаний. Используя передовые технологии, она значительно улучшает согласование текста и изображения, обеспечивая высокую степень детализации и эстетики.
🚀Основные моменты:
- Генерация изображений высокого разрешения (2K).
- Многоязычная поддержка и улучшенное согласование текста.
- Использование обучения с подкреплением для повышения качества.
- Эффективная архитектура с низкими вычислительными затратами.
- Модуль PromptEnhancer для улучшения производительности.
📌 GitHub: https://github.com/Tencent-Hunyuan/HunyuanImage-2.1
@pythonl
HunyuanImage-2.1 — это мощная модель для создания высококачественных изображений (2048x2048) на основе текстовых описаний. Используя передовые технологии, она значительно улучшает согласование текста и изображения, обеспечивая высокую степень детализации и эстетики.
🚀Основные моменты:
- Генерация изображений высокого разрешения (2K).
- Многоязычная поддержка и улучшенное согласование текста.
- Использование обучения с подкреплением для повышения качества.
- Эффективная архитектура с низкими вычислительными затратами.
- Модуль PromptEnhancer для улучшения производительности.
📌 GitHub: https://github.com/Tencent-Hunyuan/HunyuanImage-2.1
@pythonl
❤10👍5🔥5
Media is too big
VIEW IN TELEGRAM
🧠 CraftGPT: AI в Minecraft
CraftGPT — это небольшой языковой модель, предназначенный для работы в Minecraft, обученный на наборе данных TinyChat. Модель может выдавать не совсем корректные или нерелевантные ответы и имеет ограниченное окно контекста в 64 токена. Для оптимальной работы требуется MCHPRS, который использует механизмы редстоуна.
🚀Основные моменты:
- Работает в Minecraft с использованием редстоуна.
- Требует 32 ГБ ОЗУ для загрузки сервера.
- Может занять часы для генерации ответа.
- Рекомендуется тестировать ввод на эмуляторе.
- Ограниченная производительность и качество ответов.
📌 GitHub: https://github.com/sammyuri/craftgpt
@pythonl
#python
CraftGPT — это небольшой языковой модель, предназначенный для работы в Minecraft, обученный на наборе данных TinyChat. Модель может выдавать не совсем корректные или нерелевантные ответы и имеет ограниченное окно контекста в 64 токена. Для оптимальной работы требуется MCHPRS, который использует механизмы редстоуна.
🚀Основные моменты:
- Работает в Minecraft с использованием редстоуна.
- Требует 32 ГБ ОЗУ для загрузки сервера.
- Может занять часы для генерации ответа.
- Рекомендуется тестировать ввод на эмуляторе.
- Ограниченная производительность и качество ответов.
📌 GitHub: https://github.com/sammyuri/craftgpt
@pythonl
#python
❤11😁9🔥6👍5