Python/ django
63.9K subscribers
2.24K photos
124 videos
48 files
2.98K links
по всем вопросам @haarrp

@itchannels_telegram - 🔥 все ит каналы

@ai_machinelearning_big_data -ML

@ArtificialIntelligencedl -AI

@datascienceiot - 📚

@pythonlbooks

РКН: clck.ru/3FmxmM
Download Telegram
🎥 Обертка для ComfyUI: WanVideoWrapper

WanVideoWrapper — это инструмент для интеграции видео в ComfyUI, позволяющий легко обрабатывать и визуализировать видеофайлы. Проект предлагает простое решение для работы с видео в рамках интерфейса, расширяя его функциональность.

🚀 Основные моменты:
- Поддержка различных форматов видео
- Легкая интеграция с ComfyUI
- Удобный интерфейс для пользователей
- Возможность настройки параметров обработки
- Активное сообщество и поддержка

📌 GitHub: https://github.com/eddyhhlure1Eddy/ode-ComfyUI-WanVideoWrapper

#python
7👍3🔥2
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 Pandas трюк: ускоряем группировки с map вместо merge_groupby

Когда нужно добавить агрегированные значения (например, среднее по группе) обратно в исходный DataFrame, большинство разработчиков делают groupby().transform() или merge().
Но есть менее известный способ — использовать map() после groupby().mean(), который в некоторых случаях работает в 2–3 раза быстрее и требует меньше памяти.

Фокус в том, что groupby().mean() создаёт компактный Series, где индекс — это категория, а значения — результат агрегации.
А map() просто подставляет их обратно в исходный DataFrame без тяжёлого join.


import pandas as pd
import numpy as np

# пример данных
N = 5_000_000
df = pd.DataFrame({
"group": np.random.choice(["A", "B", "C", "D"], N),
"value": np.random.randn(N)
})

# классический подход
df["mean_value_merge"] = df["group"].map(df.groupby("group")["value"].mean())

# сравнение с transform
df["mean_value_transform"] = df.groupby("group")["value"].transform("mean")

# идентичность результата
print(df["mean_value_merge"].equals(df["mean_value_transform"]))


Это особенно полезно на миллионах строк, когда transform начинает “проседать”.
Метод даёт тот же результат, но заметно экономнее по CPU и RAM.

@pythonl
14🔥11👍4
🧩 Эффективное кэширование для Python-приложений

dm-cache — это библиотека для кэширования данных в Python, которая обеспечивает высокую производительность и простоту использования. Она поддерживает различные стратегии кэширования и позволяет легко интегрироваться в существующие приложения, улучшая их скорость и отзывчивость.

🚀 Основные моменты:
- Поддержка различных стратегий кэширования.
- Простая интеграция в Python-приложения.
- Высокая производительность и эффективность.
- Легкий в использовании API.

📌 GitHub: https://github.com/mingzhao/dm-cache

#python
8👍6🔥3
This media is not supported in your browser
VIEW IN TELEGRAM
🦾 Собери собственного человекоподобного робота!

OpenArm - это открытый проект гуманоидного робота, включающий всё необходимое для сборки, модификации и управления собственными роботизированными руками.

В комплект входят CAD-модели, прошивка, управляющее ПО и симуляторы, так что можно сразу перейти от идеи к реальному устройству.
Система поддерживает телеоперацию с обратной связью по усилию и гравитационную компенсацию, позволяя оператору управлять рукой естественно и точно.

💡 OpenArm интегрируется с MuJoCo и Isaac Sim, что позволяет тестировать управление в виртуальной среде перед запуском на железе.
Проект ориентирован на исследовательские лаборатории, стартапы и энтузиастов, желающих изучать манипуляцию и взаимодействие человека с роботом.

🔩 Можно собрать из набора деталей или заказать готовую сборку - цель OpenArm сделать робототехнику доступной и прозрачной для всех.
Разработкой занимается команда Enactic (Токио, Япония).

GitHub: https://github.com/enactic/OpenArm

@pythonl
🔥95👍5
This media is not supported in your browser
VIEW IN TELEGRAM
Один One Day Offer вам или целых три — всем? 😉

25 октября Сбер проведёт сразу три экспресс-отбора кандидатов в две команды: GigaData и Kandinsky. Чем вам предстоит заниматься 👇

✔️ Развивать GigaData — внутреннюю платформу Сбера, которая обрабатывает петабайты данных и миллиарды запросов в сутки. One Day Offer для Python‑разработчиков.

✔️ Работать над Kandinsky — обучать большие модели с нуля, собирать и подготавливать данные, исследовать самые эффективные методы дообучения моделей.

One Day Offer для Machine Learning Engineers с опытом в Deep Learning и компьютерном зрении (CV).
One Day Offer для Research и Deep Learning Engineers.

Выбирайте то, что больше подходит под ваши навыки, и регистрируйтесь на One Day Offer!
3🔥2😢2
👩‍💻 FastMCP — Быстрый, Python-способ создания MCP-серверов!

🌟 Серверы Model Context Protocol (MCP) — это новый стандартизированный способ предоставления контекста и инструментов вашим LLM, а FastMCP делает создание серверов MCP простым и интуитивно понятным. Создавайте инструменты, предоставляйте ресурсы и определяйте подсказки с помощью чистого кода Python!

🔐 Лицензия: MIT

🖥 Github

@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
8👍4🔥3
Питонисты, общий сбор на Selectel Python MeetUp 🐍

📍 30 октября, 18:00, Санкт-Петербург или онлайн


Встретимся с топовыми спикерами из Selectel, Яндекса и Райффайзен Банка. Протестируем экосистему mypy на разных версиях Python, обсудим хаос-тесты и cron/systemd timers. В конце вас ждет афтепати с пиццей и нетворкинг с тимлидами.

А теперь конкретнее — на митапе вы узнаете:
✔️ как использовать экосистему mypy в инфраструктуре с 400+ микросервисов,
✔️ как запускать задачи по расписанию от cron/systemd timers до чистого Python,
✔️ насколько сильно можно нагрузить систему, прежде чем она сломается.

Мероприятие абсолютно бесплатное. Приходите в офис Selectel или подключайтесь онлайн. Регистрируйтесь по ссылке.

P.S. Отправляйте коллеге-питонисту и приходите на митап вместе 😎

Реклама. АО "Селектел". erid:2W5zFK8m6tp
4😱2👍1
🤖 MimicKit: Алгоритмы имитации движений для тренировки контроллеров

MimicKit предлагает набор алгоритмов для имитации движений, включая DeepMimic и другие. Поддерживает обучение с использованием методов глубокого обучения и RL, таких как PPO и AWR. Идеально подходит для создания реалистичных анимаций.

🚀Основные моменты:
- Алгоритмы имитации движений и RL.
- Поддержка многопроцессорного и многопоточного обучения.
- Визуализация тренировочных данных и логов.
- Простая интеграция с IsaacGym.

📌 GitHub: https://github.com/xbpeng/MimicKit

#python
4👍4
Данные — стратегический актив компании 💻

Потеря информации может обернуться:
➡️финансовыми убытками
➡️штрафами от регуляторов
➡️падением репутации и доверия клиентов


Чтобы этого избежать, Cloud․ru предлагает Неудаляемое хранилище резервных копий.

Благодаря технологии Immutable Storage ваши данные становятся неизменяемыми и не могут быть удалены или изменены в течение заданного периода.

Решение:
▫️Защищает от вирусов и шифровальщиков.
▫️Помогает соответствовать требованиям регуляторов.
▫️Сохраняет критически важные данные в неизменном виде.


Подробнее о технологии — на сайте Cloud.ru 🖱
Please open Telegram to view this post
VIEW IN TELEGRAM
2👍2🔥2
🎧 Хотите превратить любую книгу в аудиокнигу?

Нашли бесплатную нейронку, которая за считанные секунды озвучит даже огромный роман.

Возможности:
— Поддержка множества языков
— Реалистичные голоса от модели KokoroTTS
— Можно создать собственный голос, если готовые не подходят
— Простая установка без лишних заморочек
— Полностью open-source и бесплатный инструмент

🔗 Забираем на GitHub — и слушаем либимые книги 📚🎶

https://github.com/denizsafak/abogen

@pythonl
🔥127👍3
Вы начали изучать Python, установили библиотеки, попробовали что-то запустить — и всё внезапно сломалось?

Не переживайте, это случалось с каждым. Просто вы не изолировали окружение. На открытом уроке курса «Machine Learning. Basic» мы разберём, как грамотно настроить виртуальное окружение, чтобы работать с Python и ML-библиотеками спокойно и системно.

Вы узнаете, что такое venv, conda и uv, как управлять зависимостями и подключать Jupyter Notebook к своему окружению. Настроим всё пошагово — без сложных терминов и магии.

Присоединяйтесь 28 октября в 20:00 (МСК). Уверенный старт в Python и машинном обучении начинается с чистого окружения. Регистрация открыта: https://otus.pw/zyQi/?erid=2W5zFHYpC6C

#реклама
О рекламодателе
4😁3
🔥 Video2X — фреймворк с открытым исходным кодом, предназначенный для повышения разрешения видео и интерполяции кадров с использованием методов машинного обучения!

🌟 Изначально созданный в 2018 году на хакатоне Hack the Valley II, проект претерпел значительные изменения, и в версии 6.0.0 был полностью переписан на C/C++, что обеспечило более высокую производительность и эффективность. Video2X поддерживает кроссплатформенную работу на Windows и Linux, предоставляя пользователям возможность улучшать качество видео с помощью таких технологий, как Anime4K v4, RealESRGAN, RealCUGAN и RIFE.

💡 Основные возможности Video2X включают два режима работы: фильтрация (увеличение разрешения) и интерполяция кадров. Инструмент поддерживает различные модели и шейдеры, совместимые с MPV, а также обеспечивает обработку без необходимости в дополнительном дисковом пространстве, требуя только место для конечного результата.

🔐 Лицензия: AGPL-3.0

🖥 Github
Please open Telegram to view this post
VIEW IN TELEGRAM
6👍2🔥2