๐๐ฎ๐๐ฎ ๐ฆ๐ฐ๐ถ๐ฒ๐ป๐ฐ๐ฒ ๐ฟ๐ผ๐ฎ๐ฑ๐บ๐ฎ๐ฝ ๐๐ผ ๐๐ต๐ฎ๐ฝ๐ฒ ๐๐ผ๐๐ฟ ๐ฐ๐ฎ๐ฟ๐ฒ๐ฒ๐ฟ: ๐
-> 1. Learn the Language of Data
Start with Python or R. Learn how to write clean scripts, automate tasks, and manipulate data like a pro.
-> 2. Master Data Handling
Use Pandas, NumPy, and SQL. These are your weapons for data cleaning, transformation, and querying.
Garbage in = Garbage out. Always clean your data.
-> 3. Nail the Basics of Statistics & Probability
You canโt call yourself a data scientist if you donโt understand distributions, p-values, confidence intervals, and hypothesis testing.
-> 4. Exploratory Data Analysis (EDA)
Visualize the story behind the numbers with Matplotlib, Seaborn, and Plotly.
EDA is how you uncover hidden gold.
-> 5. Learn Machine Learning the Right Way
Start simple:
Linear Regression
Logistic Regression
Decision Trees
Then level up with Random Forest, XGBoost, and Neural Networks.
-> 6. Build Real Projects
Kaggle, personal projects, domain-specific problemsโdonโt just learn, apply.
Make a portfolio that speaks louder than your resume.
-> 7. Learn Deployment (Optional but Powerful)
Use Flask, Streamlit, or FastAPI to deploy your models.
Turn models into real-world applications.
-> 8. Sharpen Soft Skills
Storytelling, communication, and business acumen are just as important as technical skills.
Explain your insights like a leader.
๐ฌ๐ผ๐ ๐ฑ๐ผ๐ปโ๐ ๐ต๐ฎ๐๐ฒ ๐๐ผ ๐ฏ๐ฒ ๐ฝ๐ฒ๐ฟ๐ณ๐ฒ๐ฐ๐.
๐ฌ๐ผ๐ ๐ท๐๐๐ ๐ต๐ฎ๐๐ฒ ๐๐ผ ๐ฏ๐ฒ ๐ฐ๐ผ๐ป๐๐ถ๐๐๐ฒ๐ป๐.
Join our WhatsApp channel: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
Like if you need similar content ๐๐
Hope this helps you ๐
-> 1. Learn the Language of Data
Start with Python or R. Learn how to write clean scripts, automate tasks, and manipulate data like a pro.
-> 2. Master Data Handling
Use Pandas, NumPy, and SQL. These are your weapons for data cleaning, transformation, and querying.
Garbage in = Garbage out. Always clean your data.
-> 3. Nail the Basics of Statistics & Probability
You canโt call yourself a data scientist if you donโt understand distributions, p-values, confidence intervals, and hypothesis testing.
-> 4. Exploratory Data Analysis (EDA)
Visualize the story behind the numbers with Matplotlib, Seaborn, and Plotly.
EDA is how you uncover hidden gold.
-> 5. Learn Machine Learning the Right Way
Start simple:
Linear Regression
Logistic Regression
Decision Trees
Then level up with Random Forest, XGBoost, and Neural Networks.
-> 6. Build Real Projects
Kaggle, personal projects, domain-specific problemsโdonโt just learn, apply.
Make a portfolio that speaks louder than your resume.
-> 7. Learn Deployment (Optional but Powerful)
Use Flask, Streamlit, or FastAPI to deploy your models.
Turn models into real-world applications.
-> 8. Sharpen Soft Skills
Storytelling, communication, and business acumen are just as important as technical skills.
Explain your insights like a leader.
๐ฌ๐ผ๐ ๐ฑ๐ผ๐ปโ๐ ๐ต๐ฎ๐๐ฒ ๐๐ผ ๐ฏ๐ฒ ๐ฝ๐ฒ๐ฟ๐ณ๐ฒ๐ฐ๐.
๐ฌ๐ผ๐ ๐ท๐๐๐ ๐ต๐ฎ๐๐ฒ ๐๐ผ ๐ฏ๐ฒ ๐ฐ๐ผ๐ป๐๐ถ๐๐๐ฒ๐ป๐.
Join our WhatsApp channel: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
Like if you need similar content ๐๐
Hope this helps you ๐
๐4
๐ Top 10 Data Analytics Concepts Everyone Should Know ๐
1๏ธโฃ Data Cleaning ๐งน
Removing duplicates, fixing missing or inconsistent data.
๐ Tools: Excel, Python (Pandas), SQL
2๏ธโฃ Descriptive Statistics ๐
Mean, median, mode, standard deviationโbasic measures to summarize data.
๐ Used for understanding data distribution
3๏ธโฃ Data Visualization ๐
Creating charts and dashboards to spot patterns.
๐ Tools: Power BI, Tableau, Matplotlib, Seaborn
4๏ธโฃ Exploratory Data Analysis (EDA) ๐
Identifying trends, outliers, and correlations through deep data exploration.
๐ Step before modeling
5๏ธโฃ SQL for Data Extraction ๐๏ธ
Querying databases to retrieve specific information.
๐ Focus on SELECT, JOIN, GROUP BY, WHERE
6๏ธโฃ Hypothesis Testing โ๏ธ
Making decisions using sample data (A/B testing, p-value, confidence intervals).
๐ Useful in product or marketing experiments
7๏ธโฃ Correlation vs Causation ๐
Just because two things are related doesnโt mean one causes the other!
8๏ธโฃ Data Modeling ๐ง
Creating models to predict or explain outcomes.
๐ Linear regression, decision trees, clustering
9๏ธโฃ KPIs & Metrics ๐ฏ
Understanding business performance indicators like ROI, retention rate, churn.
๐ Storytelling with Data ๐ฃ๏ธ
Translating raw numbers into insights stakeholders can act on.
๐ Use clear visuals, simple language, and real-world impact
โค๏ธ React for more
1๏ธโฃ Data Cleaning ๐งน
Removing duplicates, fixing missing or inconsistent data.
๐ Tools: Excel, Python (Pandas), SQL
2๏ธโฃ Descriptive Statistics ๐
Mean, median, mode, standard deviationโbasic measures to summarize data.
๐ Used for understanding data distribution
3๏ธโฃ Data Visualization ๐
Creating charts and dashboards to spot patterns.
๐ Tools: Power BI, Tableau, Matplotlib, Seaborn
4๏ธโฃ Exploratory Data Analysis (EDA) ๐
Identifying trends, outliers, and correlations through deep data exploration.
๐ Step before modeling
5๏ธโฃ SQL for Data Extraction ๐๏ธ
Querying databases to retrieve specific information.
๐ Focus on SELECT, JOIN, GROUP BY, WHERE
6๏ธโฃ Hypothesis Testing โ๏ธ
Making decisions using sample data (A/B testing, p-value, confidence intervals).
๐ Useful in product or marketing experiments
7๏ธโฃ Correlation vs Causation ๐
Just because two things are related doesnโt mean one causes the other!
8๏ธโฃ Data Modeling ๐ง
Creating models to predict or explain outcomes.
๐ Linear regression, decision trees, clustering
9๏ธโฃ KPIs & Metrics ๐ฏ
Understanding business performance indicators like ROI, retention rate, churn.
๐ Storytelling with Data ๐ฃ๏ธ
Translating raw numbers into insights stakeholders can act on.
๐ Use clear visuals, simple language, and real-world impact
โค๏ธ React for more
๐1
๐
Voice Recorder in Python
pip install sounddevice
Join us for more -
https://t.iss.one/pythonfreebootcamp
pip install sounddevice
import sounddevice
from scipy.io.wavfile import write
#sample_rate
fs=44100
#Ask to enter the recording time
second = int(input("Enter the Recording Time in second: "))
print("Recordingโฆ\n")
record_voice = sounddevice.rec(int(second * fs),samplerate=fs,channels=2)
sounddevice.wait()
write("MyRecording.wav",fs,record_voice)
print("Recording is done Please check you folder to listen recording")
Join us for more -
https://t.iss.one/pythonfreebootcamp
๐5
โLearn AIโ is everywhere. But where do the builders actually start? ๐ฑ
Hereโs the real path, the courses, papers and repos that matter.
โ Videos:
โก๏ธ LLM Introduction โ https://lnkd.in/ernZFpvB
โก๏ธ LLMs from Scratch - Stanford CS229 โ https://lnkd.in/etUh6_mn
โก๏ธ Agentic AI Overview โhttps://lnkd.in/ecpmzAyq
โก๏ธ Building and Evaluating Agents โ https://lnkd.in/e5KFeZGW
โก๏ธ Building Effective Agents โ https://lnkd.in/eqxvBg79
โก๏ธ Building Agents with MCP โ https://lnkd.in/eZd2ym2K
โก๏ธ Building an Agent from Scratch โ https://lnkd.in/eiZahJGn
โ Courses:
โก๏ธ HuggingFace's Agent Course โ https://lnkd.in/e7dUTYuE
โก๏ธ MCP with Anthropic โ https://lnkd.in/eMEnkCPP
โก๏ธ Building Vector DB with Pinecone โ https://lnkd.in/eP2tMGVs
โก๏ธ Vector DB from Embeddings to Apps โ https://lnkd.in/eP2tMGVs
โก๏ธ Agent Memory โ https://lnkd.in/egC8h9_Z
โก๏ธ Building and Evaluating RAG apps โ https://lnkd.in/ewy3sApa
โก๏ธ Building Browser Agents โ https://lnkd.in/ewy3sApa
โก๏ธ LLMOps โ https://lnkd.in/ex4xnE8t
โก๏ธ Evaluating AI Agents โ https://lnkd.in/eBkTNTGW
โก๏ธ Computer Use with Anthropic โ https://lnkd.in/ebHUc-ZU
โก๏ธ Multi-Agent Use โ https://lnkd.in/e4f4HtkR
โก๏ธ Improving LLM Accuracy โ https://lnkd.in/eVUXGT4M
โก๏ธ Agent Design Patterns โ https://lnkd.in/euhUq3W9
โก๏ธ Multi Agent Systems โ https://lnkd.in/evBnavk9
Access all free courses: https://whatsapp.com/channel/0029Vamhzk5JENy1Zg9KmO2g
โ Guides:
โก๏ธ Google's Agent โ https://lnkd.in/encAzwKf
โก๏ธ Google's Agent Companion โ https://lnkd.in/e3-XtYKg
โก๏ธ Building Effective Agents by Anthropic โ https://lnkd.in/egifJ_wJ
โก๏ธ Claude Code Best practices โ https://lnkd.in/eJnqfQju
โก๏ธ OpenAI's Practical Guide to Building Agents โ https://lnkd.in/e-GA-HRh
โ Repos:
โก๏ธ GenAI Agents โ https://lnkd.in/eAscvs_i
โก๏ธ Microsoft's AI Agents for Beginners โ https://lnkd.in/d59MVgic
โก๏ธ Prompt Engineering Guide โ https://lnkd.in/ewsbFwrP
โก๏ธ AI Agent Papers โ https://lnkd.in/esMHrxJX
โ Papers:
๐ก ReAct โ https://lnkd.in/eZ-Z-WFb
๐ก Generative Agents โ https://lnkd.in/eDAeSEAq
๐ก Toolformer โ https://lnkd.in/e_Vcz5K9
๐ก Chain-of-Thought Prompting โ https://lnkd.in/eRCT_Xwq
๐ก Tree of Thoughts โ https://lnkd.in/eiadYm8S
๐ก Reflexion โ https://lnkd.in/eggND2rZ
๐ก Retrieval-Augmented Generation Survey โ https://lnkd.in/eARbqdYE
Access all free courses: https://whatsapp.com/channel/0029VbB8ROL4inogeP9o8E1l
Double Tap โค๏ธ For More
Hereโs the real path, the courses, papers and repos that matter.
โ Videos:
โก๏ธ LLM Introduction โ https://lnkd.in/ernZFpvB
โก๏ธ LLMs from Scratch - Stanford CS229 โ https://lnkd.in/etUh6_mn
โก๏ธ Agentic AI Overview โhttps://lnkd.in/ecpmzAyq
โก๏ธ Building and Evaluating Agents โ https://lnkd.in/e5KFeZGW
โก๏ธ Building Effective Agents โ https://lnkd.in/eqxvBg79
โก๏ธ Building Agents with MCP โ https://lnkd.in/eZd2ym2K
โก๏ธ Building an Agent from Scratch โ https://lnkd.in/eiZahJGn
โ Courses:
โก๏ธ HuggingFace's Agent Course โ https://lnkd.in/e7dUTYuE
โก๏ธ MCP with Anthropic โ https://lnkd.in/eMEnkCPP
โก๏ธ Building Vector DB with Pinecone โ https://lnkd.in/eP2tMGVs
โก๏ธ Vector DB from Embeddings to Apps โ https://lnkd.in/eP2tMGVs
โก๏ธ Agent Memory โ https://lnkd.in/egC8h9_Z
โก๏ธ Building and Evaluating RAG apps โ https://lnkd.in/ewy3sApa
โก๏ธ Building Browser Agents โ https://lnkd.in/ewy3sApa
โก๏ธ LLMOps โ https://lnkd.in/ex4xnE8t
โก๏ธ Evaluating AI Agents โ https://lnkd.in/eBkTNTGW
โก๏ธ Computer Use with Anthropic โ https://lnkd.in/ebHUc-ZU
โก๏ธ Multi-Agent Use โ https://lnkd.in/e4f4HtkR
โก๏ธ Improving LLM Accuracy โ https://lnkd.in/eVUXGT4M
โก๏ธ Agent Design Patterns โ https://lnkd.in/euhUq3W9
โก๏ธ Multi Agent Systems โ https://lnkd.in/evBnavk9
Access all free courses: https://whatsapp.com/channel/0029Vamhzk5JENy1Zg9KmO2g
โ Guides:
โก๏ธ Google's Agent โ https://lnkd.in/encAzwKf
โก๏ธ Google's Agent Companion โ https://lnkd.in/e3-XtYKg
โก๏ธ Building Effective Agents by Anthropic โ https://lnkd.in/egifJ_wJ
โก๏ธ Claude Code Best practices โ https://lnkd.in/eJnqfQju
โก๏ธ OpenAI's Practical Guide to Building Agents โ https://lnkd.in/e-GA-HRh
โ Repos:
โก๏ธ GenAI Agents โ https://lnkd.in/eAscvs_i
โก๏ธ Microsoft's AI Agents for Beginners โ https://lnkd.in/d59MVgic
โก๏ธ Prompt Engineering Guide โ https://lnkd.in/ewsbFwrP
โก๏ธ AI Agent Papers โ https://lnkd.in/esMHrxJX
โ Papers:
๐ก ReAct โ https://lnkd.in/eZ-Z-WFb
๐ก Generative Agents โ https://lnkd.in/eDAeSEAq
๐ก Toolformer โ https://lnkd.in/e_Vcz5K9
๐ก Chain-of-Thought Prompting โ https://lnkd.in/eRCT_Xwq
๐ก Tree of Thoughts โ https://lnkd.in/eiadYm8S
๐ก Reflexion โ https://lnkd.in/eggND2rZ
๐ก Retrieval-Augmented Generation Survey โ https://lnkd.in/eARbqdYE
Access all free courses: https://whatsapp.com/channel/0029VbB8ROL4inogeP9o8E1l
Double Tap โค๏ธ For More
๐5
Free Access to our premium Data Science Channel
๐๐
https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
Amazing premium resources only for my subscribers
๐ Free Data Science Courses
๐ Machine Learning Notes
๐ Python Free Learning Resources
๐ Learn AI with ChatGPT
๐ Build Chatbots using LLM
๐ Learn Generative AI
๐ Free Coding Certified Courses
Join fast โค๏ธ
ENJOY LEARNING ๐๐
๐๐
https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
Amazing premium resources only for my subscribers
๐ Free Data Science Courses
๐ Machine Learning Notes
๐ Python Free Learning Resources
๐ Learn AI with ChatGPT
๐ Build Chatbots using LLM
๐ Learn Generative AI
๐ Free Coding Certified Courses
Join fast โค๏ธ
ENJOY LEARNING ๐๐
๐4