Python Projects & Free Books
38K subscribers
595 photos
93 files
304 links
Python Interview Projects & Free Courses

Admin: @Coderfun
Download Telegram
๐Ÿ“ ๐…๐ซ๐ž๐ž ๐˜๐จ๐ฎ๐“๐ฎ๐›๐ž ๐‘๐ž๐ฌ๐จ๐ฎ๐ซ๐œ๐ž๐ฌ ๐ญ๐จ ๐๐ฎ๐ข๐ฅ๐ ๐€๐ˆ ๐€๐ฎ๐ญ๐จ๐ฆ๐š๐ญ๐ข๐จ๐ง๐ฌ & ๐€๐ ๐ž๐ง๐ญ๐ฌ ๐–๐ข๐ญ๐ก๐จ๐ฎ๐ญ ๐‚๐จ๐๐ข๐ง๐ ๐Ÿ˜

Want to Create AI Automations & Agents Without Writing a Single Line of Code?๐Ÿง‘โ€๐Ÿ’ป

These 5 free YouTube tutorials will take you from complete beginner to automation expert in record time.๐Ÿง‘โ€๐ŸŽ“โœจ๏ธ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4lhYwhn

Just pure, actionable automation skills โ€” for free.โœ…๏ธ
๐Ÿ‘1
Machine Learning Algorithms and Frameworks
๐Ÿ‘2
๐—ฆ๐˜๐—ฒ๐—ฝ ๐—œ๐—ป๐˜๐—ผ ๐—ฎ ๐—•๐—–๐—š ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜€๐˜โ€™๐˜€ ๐—ฆ๐—ต๐—ผ๐—ฒ๐˜€: ๐—™๐—ฟ๐—ฒ๐—ฒ ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—ฆ๐—ถ๐—บ๐˜‚๐—น๐—ฎ๐˜๐—ถ๐—ผ๐—ป + ๐—–๐—ฒ๐—ฟ๐˜๐—ถ๐—ณ๐—ถ๐—ฐ๐—ฎ๐˜๐—ฒ๐Ÿ˜

๐Ÿ’ผ Ever Wondered How Data Shapes Real Business Decisions at a Top Consulting Firm?๐Ÿง‘โ€๐Ÿ’ปโœจ๏ธ

Now you can experience it firsthand with this interactive simulation from BCG (Boston Consulting Group)๐Ÿ“Š๐Ÿ“Œ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/45HWKRP

This is a powerful resume booster and a unique way to prove your analytical skillsโœ…๏ธ
๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐˜๐—ถ๐˜€๐˜ ๐˜ƒ๐˜€. ๐——๐—ฎ๐˜๐—ฎ ๐—˜๐—ป๐—ด๐—ถ๐—ป๐—ฒ๐—ฒ๐—ฟ ๐˜ƒ๐˜€. ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜€๐˜ ๐˜ƒ๐˜€. ๐— ๐—Ÿ ๐—˜๐—ป๐—ด๐—ถ๐—ป๐—ฒ๐—ฒ๐—ฟ

๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐˜๐—ถ๐˜€๐˜

Think of them as data detectives.
โ†’ ๐…๐จ๐œ๐ฎ๐ฌ: Identifying patterns and building predictive models.
โ†’ ๐’๐ค๐ข๐ฅ๐ฅ๐ฌ: Machine learning, statistics, Python/R.
โ†’ ๐“๐จ๐จ๐ฅ๐ฌ: Jupyter Notebooks, TensorFlow, PyTorch.
โ†’ ๐†๐จ๐š๐ฅ: Extract actionable insights from raw data.
๐„๐ฑ๐š๐ฆ๐ฉ๐ฅ๐ž: Creating a recommendation system like Netflix.

๐——๐—ฎ๐˜๐—ฎ ๐—˜๐—ป๐—ด๐—ถ๐—ป๐—ฒ๐—ฒ๐—ฟ

The architects of data infrastructure.
โ†’ ๐…๐จ๐œ๐ฎ๐ฌ: Developing data pipelines, storage systems, and infrastructure. โ†’ ๐’๐ค๐ข๐ฅ๐ฅ๐ฌ: SQL, Big Data technologies (Hadoop, Spark), cloud platforms.
โ†’ ๐“๐จ๐จ๐ฅ๐ฌ: Airflow, Kafka, Snowflake.
โ†’ ๐†๐จ๐š๐ฅ: Ensure seamless data flow across the organization.
๐„๐ฑ๐š๐ฆ๐ฉ๐ฅ๐ž: Designing a pipeline to handle millions of transactions in real-time.

๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜€๐˜

Data storytellers.
โ†’ ๐…๐จ๐œ๐ฎ๐ฌ: Creating visualizations, dashboards, and reports.
โ†’ ๐’๐ค๐ข๐ฅ๐ฅ๐ฌ: Excel, Tableau, SQL.
โ†’ ๐“๐จ๐จ๐ฅ๐ฌ: Power BI, Looker, Google Sheets.
โ†’ ๐†๐จ๐š๐ฅ: Help businesses make data-driven decisions.
๐„๐ฑ๐š๐ฆ๐ฉ๐ฅ๐ž: Analyzing campaign data to optimize marketing strategies.

๐— ๐—Ÿ ๐—˜๐—ป๐—ด๐—ถ๐—ป๐—ฒ๐—ฒ๐—ฟ

The connectors between data science and software engineering.
โ†’ ๐…๐จ๐œ๐ฎ๐ฌ: Deploying machine learning models into production.
โ†’ ๐’๐ค๐ข๐ฅ๐ฅ๐ฌ: Python, APIs, cloud services (AWS, Azure).
โ†’ ๐“๐จ๐จ๐ฅ๐ฌ: Kubernetes, Docker, FastAPI.
โ†’ ๐†๐จ๐š๐ฅ: Make models scalable and ready for real-world applications. ๐„๐ฑ๐š๐ฆ๐ฉ๐ฅ๐ž: Deploying a fraud detection model for a bank.

๐—ช๐—ต๐—ฎ๐˜ ๐—ฃ๐—ฎ๐˜๐—ต ๐—ฆ๐—ต๐—ผ๐˜‚๐—น๐—ฑ ๐—ฌ๐—ผ๐˜‚ ๐—–๐—ต๐—ผ๐—ผ๐˜€๐—ฒ?

โ˜‘ Love solving complex problems?
โ†’ Data Scientist
โ˜‘ Enjoy working with systems and Big Data?
โ†’ Data Engineer
โ˜‘ Passionate about visual storytelling?
โ†’ Data Analyst
โ˜‘ Excited to scale AI systems?
โ†’ ML Engineer

Each role is crucial and in demandโ€”choose based on your strengths and career aspirations.

Whatโ€™s your ideal role?

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

Credits: https://t.iss.one/datasciencefun

Like if you need similar content

ENJOY LEARNING ๐Ÿ‘๐Ÿ‘
๐Ÿ‘1
๐’๐ญ๐š๐ซ๐ญ ๐˜๐จ๐ฎ๐ซ ๐ƒ๐š๐ญ๐š ๐€๐ง๐š๐ฅ๐ฒ๐ญ๐ข๐œ๐ฌ ๐‰๐จ๐ฎ๐ซ๐ง๐ž๐ฒ โ€” ๐Ÿ๐ŸŽ๐ŸŽ% ๐…๐ซ๐ž๐ž & ๐๐ž๐ ๐ข๐ง๐ง๐ž๐ซ-๐…๐ซ๐ข๐ž๐ง๐๐ฅ๐ฒ๐Ÿ˜

Want to dive into data analytics but donโ€™t know where to start?๐Ÿง‘โ€๐Ÿ’ปโœจ๏ธ

These free Microsoft learning paths take you from analytics basics to creating dashboards, AI insights with Copilot, and end-to-end analytics with Microsoft Fabric.๐Ÿ“Š๐Ÿ“Œ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/47oQD6f

No prior experience needed โ€” just curiosityโœ…๏ธ
๐Ÿ‘1
Top Libraries & Frameworks by Language ๐Ÿ“š๐Ÿ’ป

โฏ Python
โ€ƒโ€ข Pandas โžŸ Data Analysis
โ€ƒโ€ข NumPy โžŸ Math & Arrays
โ€ƒโ€ข Scikit-learn โžŸ Machine Learning
โ€ƒโ€ข TensorFlow / PyTorch โžŸ Deep Learning
โ€ƒโ€ข Flask / Django โžŸ Web Development
โ€ƒโ€ข OpenCV โžŸ Image Processing

โฏ JavaScript / TypeScript
โ€ƒโ€ข React โžŸ UI Development
โ€ƒโ€ข Vue โžŸ Lightweight SPAs
โ€ƒโ€ข Angular โžŸ Enterprise Apps
โ€ƒโ€ข Next.js โžŸ Full-Stack Web
โ€ƒโ€ข Express โžŸ Backend APIs
โ€ƒโ€ข Three.js โžŸ 3D Web Graphics

โฏ Java
โ€ƒโ€ข Spring Boot โžŸ Microservices
โ€ƒโ€ข Hibernate โžŸ ORM
โ€ƒโ€ข Apache Maven โžŸ Build Automation
โ€ƒโ€ข Apache Kafka โžŸ Real-Time Data

โฏ C++
โ€ƒโ€ข Boost โžŸ Utility Libraries
โ€ƒโ€ข Qt โžŸ GUI Applications
โ€ƒโ€ข Unreal Engine โžŸ Game Development

โฏ C#
โ€ƒโ€ข .NET / ASP.NET โžŸ Web Apps
โ€ƒโ€ข Unity โžŸ Game Development
โ€ƒโ€ข Entity Framework โžŸ ORM

โฏ R
โ€ƒโ€ข ggplot2 โžŸ Data Visualization
โ€ƒโ€ข dplyr โžŸ Data Manipulation
โ€ƒโ€ข caret โžŸ Machine Learning
โ€ƒโ€ข Shiny โžŸ Interactive Dashboards

โฏ PHP
โ€ƒโ€ข Laravel โžŸ Full-Stack Web
โ€ƒโ€ข Symfony โžŸ Web Framework
โ€ƒโ€ข PHPUnit โžŸ Testing

โฏ Go (Golang)
โ€ƒโ€ข Gin โžŸ Web Framework
โ€ƒโ€ข Gorilla โžŸ Web Toolkit
โ€ƒโ€ข GORM โžŸ ORM for Go

โฏ Rust
โ€ƒโ€ข Actix โžŸ Web Framework
โ€ƒโ€ข Rocket โžŸ Web Development
โ€ƒโ€ข Tokio โžŸ Async Runtime

Coding Resources: https://whatsapp.com/channel/0029VahiFZQ4o7qN54LTzB17

React with โค๏ธ for more useful content
๐Ÿ‘2
๐Ÿ” Real-World Data Analyst Tasks & How to Solve Them

As a Data Analyst, your job isnโ€™t just about writing SQL queries or making dashboardsโ€”itโ€™s about solving business problems using data. Letโ€™s explore some common real-world tasks and how you can handle them like a pro!

๐Ÿ“Œ Task 1: Cleaning Messy Data

Before analyzing data, you need to remove duplicates, handle missing values, and standardize formats.

โœ… Solution (Using Pandas in Python):

import pandas as pd  
df = pd.read_csv('sales_data.csv')
df.drop_duplicates(inplace=True) # Remove duplicate rows
df.fillna(0, inplace=True) # Fill missing values with 0
print(df.head())


๐Ÿ’ก Tip: Always check for inconsistent spellings and incorrect date formats!


๐Ÿ“Œ Task 2: Analyzing Sales Trends

A company wants to know which months have the highest sales.

โœ… Solution (Using SQL):

SELECT MONTH(SaleDate) AS Month, SUM(Quantity * Price) AS Total_Revenue  
FROM Sales
GROUP BY MONTH(SaleDate)
ORDER BY Total_Revenue DESC;


๐Ÿ’ก Tip: Try adding YEAR(SaleDate) to compare yearly trends!


๐Ÿ“Œ Task 3: Creating a Business Dashboard

Your manager asks you to create a dashboard showing revenue by region, top-selling products, and monthly growth.

โœ… Solution (Using Power BI / Tableau):

๐Ÿ‘‰ Add KPI Cards to show total sales & profit

๐Ÿ‘‰ Use a Line Chart for monthly trends

๐Ÿ‘‰ Create a Bar Chart for top-selling products

๐Ÿ‘‰ Use Filters/Slicers for better interactivity

๐Ÿ’ก Tip: Keep your dashboards clean, interactive, and easy to interpret!

Like this post for more content like this โ™ฅ๏ธ

Share with credits: https://t.iss.one/sqlspecialist

Hope it helps :)
๐Ÿ‘5
๐Ÿฎ๐Ÿฑ+ ๐— ๐˜‚๐˜€๐˜-๐—ž๐—ป๐—ผ๐˜„ ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ป๐—ฎ๐—น๐˜†๐˜๐—ถ๐—ฐ๐˜€ ๐—œ๐—ป๐˜๐—ฒ๐—ฟ๐˜ƒ๐—ถ๐—ฒ๐˜„ ๐—ค๐˜‚๐—ฒ๐˜€๐˜๐—ถ๐—ผ๐—ป๐˜€ ๐˜๐—ผ ๐—Ÿ๐—ฎ๐—ป๐—ฑ ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐——๐—ฟ๐—ฒ๐—ฎ๐—บ ๐—๐—ผ๐—ฏ ๐Ÿ˜

Breaking into Data Analytics isnโ€™t just about knowing the tools โ€” itโ€™s about answering the right questions with confidence๐Ÿง‘โ€๐Ÿ’ปโœจ๏ธ

Whether youโ€™re aiming for your first role or looking to level up your career, these real interview questions will test your skills๐Ÿ“Š๐Ÿ“Œ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3JumloI

Donโ€™t just learn โ€” prepare smartโœ…๏ธ
๐Ÿ‘1
Machine Learning Algorithm
๐Ÿ‘2
Python Interview Questions:

Ready to test your Python skills? Letโ€™s get started! ๐Ÿ’ป


1. How to check if a string is a palindrome?

def is_palindrome(s):
return s == s[::-1]

print(is_palindrome("madam")) # True
print(is_palindrome("hello")) # False

2. How to find the factorial of a number using recursion?

def factorial(n):
if n == 0 or n == 1:
return 1
return n * factorial(n - 1)

print(factorial(5)) # 120

3. How to merge two dictionaries in Python?

dict1 = {'a': 1, 'b': 2}
dict2 = {'c': 3, 'd': 4}

# Method 1 (Python 3.5+)
merged_dict = {**dict1, **dict2}

# Method 2 (Python 3.9+)
merged_dict = dict1 | dict2

print(merged_dict)

4. How to find the intersection of two lists?

list1 = [1, 2, 3, 4]
list2 = [3, 4, 5, 6]

intersection = list(set(list1) & set(list2))
print(intersection) # [3, 4]

5. How to generate a list of even numbers from 1 to 100?

even_numbers = [i for i in range(1, 101) if i % 2 == 0]
print(even_numbers)

6. How to find the longest word in a sentence?

def longest_word(sentence):
words = sentence.split()
return max(words, key=len)

print(longest_word("Python is a powerful language")) # "powerful"

7. How to count the frequency of elements in a list?

from collections import Counter

my_list = [1, 2, 2, 3, 3, 3, 4]
frequency = Counter(my_list)
print(frequency) # Counter({3: 3, 2: 2, 1: 1, 4: 1})

8. How to remove duplicates from a list while maintaining the order?

def remove_duplicates(lst):
return list(dict.fromkeys(lst))

my_list = [1, 2, 2, 3, 4, 4, 5]
print(remove_duplicates(my_list)) # [1, 2, 3, 4, 5]

9. How to reverse a linked list in Python?

class Node:
def __init__(self, data):
self.data = data
self.next = None

def reverse_linked_list(head):
prev = None
current = head
while current:
next_node = current.next
current.next = prev
prev = current
current = next_node
return prev

# Create linked list: 1 -> 2 -> 3
head = Node(1)
head.next = Node(2)
head.next.next = Node(3)

# Reverse and print the list
reversed_head = reverse_linked_list(head)
while reversed_head:
print(reversed_head.data, end=" -> ")
reversed_head = reversed_head.next

10. How to implement a simple binary search algorithm?

def binary_search(arr, target):
low, high = 0, len(arr) - 1
while low <= high:
mid = (low + high) // 2
if arr[mid] == target:
return mid
elif arr[mid] < target:
low = mid + 1
else:
high = mid - 1
return -1

print(binary_search([1, 2, 3, 4, 5, 6, 7], 4)) # 3


Here you can find essential Python Interview Resources๐Ÿ‘‡
https://t.iss.one/pythonproz

Like for more resources like this ๐Ÿ‘ โ™ฅ๏ธ

Share with credits: https://t.iss.one/sqlspecialist

Hope it helps :)
๐Ÿ‘3
Forwarded from Artificial Intelligence
๐„๐š๐ซ๐ง ๐…๐‘๐„๐„ ๐Ž๐ซ๐š๐œ๐ฅ๐ž ๐‚๐ž๐ซ๐ญ๐ข๐Ÿ๐ข๐œ๐š๐ญ๐ข๐จ๐ง๐ฌ ๐ข๐ง ๐Ÿ๐ŸŽ๐Ÿ๐Ÿ“ โ€” ๐‚๐ฅ๐จ๐ฎ๐, ๐€๐ˆ & ๐ƒ๐š๐ญ๐š!๐Ÿ˜

Oracleโ€™s Race to Certification is here โ€” your chance to earn globally recognized certifications for FREE!๐Ÿ’ฅ

๐Ÿ’ก Choose from in-demand certifications in:
โ˜๏ธ Cloud
๐Ÿค– AI
๐Ÿ“Š Data
โ€ฆand more!

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/4lx2tin

โšกBut hurry โ€” spots are limited, and the clock is ticking!โœ…๏ธ
๐Ÿ‘1
๐——๐—ฎ๐˜๐—ฎ ๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ฟ๐—ผ๐—ฎ๐—ฑ๐—บ๐—ฎ๐—ฝ ๐˜๐—ผ ๐˜€๐—ต๐—ฎ๐—ฝ๐—ฒ ๐˜†๐—ผ๐˜‚๐—ฟ ๐—ฐ๐—ฎ๐—ฟ๐—ฒ๐—ฒ๐—ฟ: ๐Ÿ‘‡

-> 1. Learn the Language of Data
Start with Python or R. Learn how to write clean scripts, automate tasks, and manipulate data like a pro.

-> 2. Master Data Handling
Use Pandas, NumPy, and SQL. These are your weapons for data cleaning, transformation, and querying.
Garbage in = Garbage out. Always clean your data.

-> 3. Nail the Basics of Statistics & Probability
You canโ€™t call yourself a data scientist if you donโ€™t understand distributions, p-values, confidence intervals, and hypothesis testing.

-> 4. Exploratory Data Analysis (EDA)
Visualize the story behind the numbers with Matplotlib, Seaborn, and Plotly.
EDA is how you uncover hidden gold.

-> 5. Learn Machine Learning the Right Way

Start simple:

Linear Regression

Logistic Regression

Decision Trees
Then level up with Random Forest, XGBoost, and Neural Networks.


-> 6. Build Real Projects
Kaggle, personal projects, domain-specific problemsโ€”donโ€™t just learn, apply.
Make a portfolio that speaks louder than your resume.

-> 7. Learn Deployment (Optional but Powerful)
Use Flask, Streamlit, or FastAPI to deploy your models.
Turn models into real-world applications.

-> 8. Sharpen Soft Skills
Storytelling, communication, and business acumen are just as important as technical skills.
Explain your insights like a leader.


๐—ฌ๐—ผ๐˜‚ ๐—ฑ๐—ผ๐—ปโ€™๐˜ ๐—ต๐—ฎ๐˜ƒ๐—ฒ ๐˜๐—ผ ๐—ฏ๐—ฒ ๐—ฝ๐—ฒ๐—ฟ๐—ณ๐—ฒ๐—ฐ๐˜.
๐—ฌ๐—ผ๐˜‚ ๐—ท๐˜‚๐˜€๐˜ ๐—ต๐—ฎ๐˜ƒ๐—ฒ ๐˜๐—ผ ๐—ฏ๐—ฒ ๐—ฐ๐—ผ๐—ป๐˜€๐—ถ๐˜€๐˜๐—ฒ๐—ป๐˜.

Join our WhatsApp channel: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D

Like if you need similar content ๐Ÿ˜„๐Ÿ‘

Hope this helps you ๐Ÿ˜Š
๐Ÿ‘3
๐Ÿฏ ๐—š๐—ฎ๐—บ๐—ฒ-๐—–๐—ต๐—ฎ๐—ป๐—ด๐—ถ๐—ป๐—ด ๐—–๐—ผ๐˜‚๐—ฟ๐˜€๐—ฒ๐˜€ ๐˜๐—ผ ๐— ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ ๐—ฃ๐˜†๐˜๐—ต๐—ผ๐—ป ๐—ณ๐—ผ๐—ฟ ๐—™๐—ฟ๐—ฒ๐—ฒ๐Ÿ˜

Want to break into Data Science or Tech?

Python is the #1 skill you need โ€” and starting is easier than you think.๐Ÿง‘โ€๐Ÿ’ปโœจ๏ธ

๐‹๐ข๐ง๐ค๐Ÿ‘‡:-

https://pdlink.in/3JemBIt

Your career upgrade starts today โ€” no excuses!โœ…๏ธ
๐Ÿ‘1