Коллизии обрабатываются внутри хеш-таблиц специальными алгоритмами, например, открытой адресацией. Python применяет внутренние механизмы для разрешения коллизий и сохранения производительности.
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3🤔2💊2🔥1
Это поведенческий паттерн проектирования, который определяет семейство алгоритмов, инкапсулирует каждый из них и делает их взаимозаменяемыми. Паттерн "Стратегия" позволяет изменять алгоритмы независимо от клиентов, которые их используют.
Позволяет инкапсулировать различные алгоритмы и использовать их независимо.
Устраняет дублирование кода и упрощает классы, которые используют эти алгоритмы.
Легко добавлять новые алгоритмы или изменять существующие без изменения клиентского кода.
Интерфейс, определяющий общий метод, который должны реализовать все алгоритмы.
Реализации различных алгоритмов, которые реализуют интерфейс стратегии.
Класс, использующий стратегию для выполнения задачи.
from abc import ABC, abstractmethod
# Интерфейс стратегии
class Strategy(ABC):
@abstractmethod
def sort(self, data):
pass
# Конкретные стратегии
class BubbleSortStrategy(Strategy):
def sort(self, data):
print("Sorting using Bubble Sort")
for i in range(len(data)):
for j in range(0, len(data)-i-1):
if data[j] > data[j+1]:
data[j], data[j+1] = data[j+1], data[j]
class QuickSortStrategy(Strategy):
def sort(self, data):
print("Sorting using Quick Sort")
self.quick_sort(data, 0, len(data) - 1)
def quick_sort(self, data, low, high):
if low < high:
pi = self.partition(data, low, high)
self.quick_sort(data, low, pi - 1)
self.quick_sort(data, pi + 1, high)
def partition(self, data, low, high):
pivot = data[high]
i = low - 1
for j in range(low, high):
if data[j] <= pivot:
i = i + 1
data[i], data[j] = data[j], data[i]
data[i + 1], data[high] = data[high], data[i + 1]
return i + 1
# Контекст
class SortingContext:
def __init__(self, strategy: Strategy):
self._strategy = strategy
def set_strategy(self, strategy: Strategy):
self._strategy = strategy
def sort(self, data):
self._strategy.sort(data)
# Клиентский код
data = [5, 2, 9, 1, 5, 6]
context = SortingContext(BubbleSortStrategy())
context.sort(data)
print(data) # [1, 2, 5, 5, 6, 9]
context.set_strategy(QuickSortStrategy())
data = [3, 7, 8, 5, 2, 1, 9, 5, 4]
context.sort(data)
print(data) # [1, 2, 3, 4, 5, 5, 7, 8, 9]
Алгоритмы инкапсулируются в отдельные классы, что упрощает их замену и добавление.
Контекст использует стратегии, избегая громоздких условных операторов.
Легко добавлять новые стратегии без изменения существующего кода.
Добавление множества классов стратегий может усложнить проект.
Контекст должен знать о всех возможных стратегиях, чтобы иметь возможность их переключать.
Когда есть несколько вариантов алгоритмов для выполнения задачи.
Когда нужно динамически выбирать алгоритм во время выполнения.
Когда необходимо избежать множества условных операторов для выбора алгоритма.
Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4🔥3
Это делается с использованием временного хранения или с возможностью множественного присваивания. Python предоставляет лаконичный способ, позволяющий поменять значения без дополнительных переменных.
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5🤔2🔥1
В Python 3.11 были добавлены новые классы исключений
BaseExceptionGroup и ExceptionGroup. Эти классы решают проблему одновременной обработки нескольких исключений, которые могут возникать в сложных ситуациях, таких как асинхронное программирование, многопоточность или обработка нескольких связанных ошибок. Давайте разберем, зачем они нужны, как их использовать и какие преимущества они дают.Ранее в Python было возможно выбросить только одно исключение за раз, и обработка нескольких исключений одновременно требовала сложного и неочевидного кода. Например:
При работе с асинхронными функциями или потоками может возникнуть сразу несколько ошибок, и их нужно корректно обработать.
В больших приложениях или библиотеках (например, при работе с
asyncio) может быть необходимость передать сразу несколько исключений, которые произошли в разных местах, как единый объект.BaseExceptionGroup и его подкласс ExceptionGroup позволяют группировать несколько исключений и выбрасывать их вместе в виде одного объекта. Это делает код более читаемым, упрощает обработку и исключает необходимость ручной агрегации ошибок.BaseExceptionGroup - это базовый класс для группировки исключений. Он наследуется от BaseException и, как правило, не используется напрямую.ExceptionGroup - это подкласс, который наследуется от Exception. Этот класс используется для обработки групп исключений, которые возникают при обычных ошибках в коде (не фатальных).Классы исключений
BaseExceptionGroup и ExceptionGroup позволяют создать "группу исключений", которая содержит несколько отдельных исключений. Это полезно, когда вам нужно:Указать несколько ошибок одновременно.
Позволить обработчику исключений работать с каждым из них.
def task_1():
raise ValueError("Ошибка в задаче 1")
def task_2():
raise TypeError("Ошибка в задаче 2")
try:
# Создаем группу исключений
raise ExceptionGroup(
"Ошибки в задачах",
[ValueError("Ошибка в задаче 1"), TypeError("Ошибка в задаче 2")]
)
except ExceptionGroup as eg:
for exc in eg.exceptions:
print(f"Обнаружено исключение: {exc}")
Результат
Обнаружено исключение: Ошибка в задаче 1
Обнаружено исключение: Ошибка в задаче 2
При обработке
ExceptionGroup можно использовать механизм фильтрации с помощью конструкции except*. Это нововведение в Python 3.11 позволяет обрабатывать разные типы исключений внутри группы по-разному.try:
raise ExceptionGroup(
"Ошибки в задачах",
[ValueError("Ошибка 1"), TypeError("Ошибка 2"), ValueError("Ошибка 3")]
)
except* ValueError as ve:
print("Обрабатываем ValueError:", ve)
except* TypeError as te:
print("Обрабатываем TypeError:", te)
Результат
Обрабатываем ValueError: Ошибка 1
Обрабатываем ValueError: Ошибка 3
Обрабатываем TypeError: Ошибка 2
Вы можете объединить связанные ошибки и передать их в одном объекте.
Использование
except* позволяет обработать каждое исключение из группы отдельно, не теряя гибкости.В асинхронных задачах (
asyncio) часто возникает несколько ошибок одновременно, и их можно группировать для дальнейшей обработки.Код становится проще и понятнее, так как не нужно вручную собирать и разбирать исключения.
Когда вы работаете с несколькими задачами, которые могут порождать ошибки одновременно (например, асинхронный код).
Когда вы хотите сообщить о нескольких связанных ошибках, не выбрасывая каждую из них отдельно.
Когда требуется раздельная обработка разных типов ошибок.
Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍10
Это неупорядоченная коллекция уникальных элементов в Python. Это одна из встроенных структур данных языка, которая используется, когда вам нужно работать с наборами данных, исключая дубликаты и выполняя операции над множествами (например, пересечение, объединение и разность).
Элементы множества не имеют фиксированного порядка, то есть вы не можете обращаться к элементам по индексу, как в списках или кортежах.
Во множестве не может быть дубликатов. Если вы добавите во множество несколько одинаковых элементов, они будут храниться как один экземпляр.
Множества в Python изменяемы: вы можете добавлять, удалять и изменять их элементы. Однако сами элементы множества должны быть неизменяемыми (например, числа, строки, кортежи).
Операции проверки принадлежности (
in), добавления и удаления элементов работают очень быстро, благодаря использованию хэш-таблиц в реализации множества.Для создания пустого множества используется функция
set(), так как {} создаёт пустой словарьempty_set = set()
print(empty_set) # Output: set()
Вы можете передать список, строку, кортеж или другой итерируемый объект в функцию
set(). # Создание множества из списка
numbers = set([1, 2, 3, 4, 5])
print(numbers) # Output: {1, 2, 3, 4, 5}
# Создание множества из строки (уникальные символы)
chars = set("hello")
print(chars) # Output: {'h', 'e', 'l', 'o'} (порядок может быть разным)
Вы также можете использовать фигурные скобки
{} для создания множестваfruits = {"apple", "banana", "cherry"}
print(fruits) # Output: {'apple', 'banana', 'cherry'}Используется метод
add()my_set = {1, 2, 3}
my_set.add(4)
print(my_set) # Output: {1, 2, 3, 4}remove() — удаляет элемент, выбрасывая ошибку, если его нет.discard() — удаляет элемент, не выбрасывая ошибку, если его нет.my_set = {1, 2, 3}
my_set.remove(2) # Удаляем элемент 2
print(my_set) # Output: {1, 3}
my_set.discard(5) # Ошибки не будет, если элемента 5 нетpop() — удаляет и возвращает случайный элемент (так как множество неупорядочено)my_set = {1, 2, 3}
removed_element = my_set.pop()
print(removed_element) # Например: 1
print(my_set) # Например: {2, 3}my_set = {1, 2, 3}
my_set.clear()
print(my_set) # Output: set()Используется оператор
inmy_set = {1, 2, 3}
print(2 in my_set) # Output: True
print(5 in my_set) # Output: FalsePython поддерживает классические операции теории множеств:
Возвращает множество, содержащее все элементы из двух множеств.
set1 = {1, 2, 3}
set2 = {3, 4, 5}
print(set1 | set2) # Output: {1, 2, 3, 4, 5}
print(set1.union(set2)) # То же самоеВозвращает элементы, которые присутствуют в обоих множествах.
print(set1 & set2) # Output: {3}
print(set1.intersection(set2)) # То же самоеВозвращает элементы, которые присутствуют только в одном множестве (а не в другом).
print(set1 - set2) # Output: {1, 2} (только в set1)
print(set1.difference(set2)) # То же самоеВозвращает элементы, которые есть в одном из множеств, но не в обоих сразу.
print(set1 ^ set2) # Output: {1, 2, 4, 5}
print(set1.symmetric_difference(set2)) # То же самоеЕсли вам нужно создать множество, которое нельзя изменить, используйте
frozensetfrozen = frozenset([1, 2, 3])
print(frozen) # Output: frozenset({1, 2, 3})
# frozen.add(4) # Ошибка: 'frozenset' object has no attribute 'add'
Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5
Оператор % возвращает остаток от деления одного числа на другое. Используется для проверки чётности, цикличности, деления по модулю и т.д.
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4
Обработка исключений — это механизм в программировании, который позволяет предотвращать аварийное завершение программы, если во время выполнения возникает ошибка. Вместо того чтобы программа просто "упала", обработка исключений дает возможность перехватить ошибку и обработать её безопасным способом.
В реальном коде ошибки неизбежны:
деление на ноль (
ZeroDivisionError), обращение к несуществующему индексу (
IndexError), работа с несуществующим файлом (
FileNotFoundError) и т. д. В Python для обработки исключений используется конструкция try-except.
Обработка деления на ноль
try:
x = 10 / 0 # Ошибка: деление на ноль
except ZeroDivisionError:
print("Ошибка! Деление на ноль невозможно.")
Результат: вместо аварийного завершения программы мы получаем сообщение
Ошибка! Деление на ноль невозможно.
Обработка нескольких типов исключений
try:
num = int(input("Введите число: ")) # Возможна ошибка ValueError
result = 10 / num # Возможна ошибка ZeroDivisionError
except ZeroDivisionError:
print("Ошибка! Деление на ноль.")
except ValueError:
print("Ошибка! Введите число.")
Если пользователь введет "abc", программа не завершится с ошибкой, а выведет
Ошибка! Введите число.
Использование
finally (код, который выполняется всегда) try:
file = open("data.txt", "r") # Возможна ошибка FileNotFoundError
content = file.read()
except FileNotFoundError:
print("Файл не найден!")
finally:
print("Программа завершена.") # Выполнится в любом случае
Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5
GIL, или глобальная блокировка интерпретатора, предотвращает одновременное выполнение нескольких потоков в интерпретаторе Python. Это упрощает реализацию интерпретатора и защищает память от ошибок, связанных с конкурентным доступом. Таким образом, он обеспечивает безопасность при многопоточности.
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2