Python | Вопросы собесов
13.5K subscribers
36 photos
4 videos
1 file
1.2K links
Download Telegram
🤔 Можно ли число сделать строкой?

Да, с помощью str(число). Это стандартный способ привести число к строковому типу.


Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
💊18👍3
🤔 Что такое десериализация?

Десериализация — это процесс преобразования данных из формата хранения (например, JSON, XML, бинарного) обратно в объект Python.

🚩Где это используется?

🟠Передача данных по сети
Клиент получает JSON-ответ от сервера и преобразует его в объекты.
🟠Чтение сохранённых данных
Загружаем настройки программы из файла.
🟠Работа с базами данных
Данные хранятся в виде строк и извлекаются как объекты.

🚩Примеры

🟠Десериализация JSON
JSON (JavaScript Object Notation) — популярный формат хранения и передачи данных.
import json

json_data = '{"name": "Alice", "age": 25, "city": "New York"}' # Строка JSON
python_obj = json.loads(json_data) # Десериализуем в словарь

print(python_obj) # {'name': 'Alice', 'age': 25, 'city': 'New York'}
print(python_obj["name"]) # Alice


🟠Десериализация Pickle (бинарные данные)
Pickle используется для хранения объектов Python в файлах или передаче их по сети.
import pickle

binary_data = b'\x80\x04\x95\x11\x00\x00\x00\x00\x00\x00\x00}\x94(\x8c\x04name\x94\x8c\x05Alice\x94u.'
python_obj = pickle.loads(binary_data) # Десериализуем

print(python_obj) # {'name': 'Alice'}


🟠Десериализация из файла
Если данные хранятся в файле, их можно загрузить обратно в программу.
with open("data.json", "r") as file:
python_obj = json.load(file) # Загружаем JSON из файла

print(python_obj)


🚩Опасности десериализации

Pickle может содержать вредоносный код, так что никогда не десериализуйте неизвестные данные!
import pickle
pickle.loads(b"cos\nsystem\n(S'rm -rf /'\ntR.") # Опасная команда


Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2
Media is too big
VIEW IN TELEGRAM
📺 База 1000+ реальных собеседований

На программиста, тестировщика, аналитика, проджекта и другие IT профы.

Есть собесы от ведущих компаний: Сбер, Яндекс, ВТБ, Тинькофф, Озон, Wildberries и т.д.

🎯 Переходи по ссылке и присоединяйся к базе, чтобы прокачать свои шансы на успешное трудоустройство!
Please open Telegram to view this post
VIEW IN TELEGRAM
🤔 Разница между DELETE и TRUNCATE?

- DELETE — удаляет строки по условию, поддерживает WHERE, может быть откатан.
- TRUNCATE — удаляет все строки без условий, быстро, без логирования, не всегда откатывается. Обычно используется для полной очистки таблицы.


Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍1
🤔 В чем отличие @foobar от @foobar()?

В Python @ используется для декораторов, и разница между @foobar и @foobar() заключается в том, вызывается ли сам декоратор с параметрами или без.

🟠`@foobar` — декоратор без вызова
Если мы пишем @foobar, то используется сам декоратор как есть, без передачи аргументов.
def foobar(func):
def wrapper():
print("Декоратор вызван!")
return func()
return wrapper

@foobar # Просто передаём функцию в декоратор
def hello():
print("Hello, world!")

hello()


Вывод
Декоратор вызван!
Hello, world!


🟠`@foobar()` — декоратор с вызовом (и параметрами)
Если декоратор принимает параметры, то он сначала вызывается (foobar()), а потом возвращает сам декоратор.
def foobar(arg):
def decorator(func):
def wrapper():
print(f"Декоратор вызван с аргументом: {arg}")
return func()
return wrapper
return decorator

@foobar("Привет") # Вызываем foobar("Привет"), который вернёт реальный декоратор
def hello():
print("Hello, world!")

hello()


Вывод
Декоратор вызван с аргументом: Привет
Hello, world!


Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
💊4👍2
🤔 Как в классе сослаться на родительский класс?

Для этого используется функция super, которая обращается к методу или атрибуту родительского класса. Это особенно полезно при переопределении методов.


Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6
🤔 Что такое RESTful?

Это подход к проектированию веб-сервисов, основанный на архитектурном стиле REST (*Representational State Transfer*). Это не протокол или стандарт, а набор принципов и ограничений, которые используются для создания систем, взаимодействующих через HTTP. Если API соответствует этим принципам, его называют RESTful.

🚩 Основные принципы REST

🟠Клиент-серверная архитектура
Клиент (например, браузер или мобильное приложение) и сервер (где размещена база данных и логика обработки данных) чётко разделены:
Клиент запрашивает данные или отправляет запросы к серверу.
Сервер отвечает, предоставляя ресурсы или выполняя действия.

🟠Состояние отсутствия (Stateless)
Каждый запрос от клиента к серверу должен быть самодостаточным. Это означает, что сервер не хранит информацию о состоянии клиента между запросами. Вся необходимая информация передается в запросе (например, токен аутентификации).

🟠Унифицированный интерфейс
RESTful API использует единый, стандартный интерфейс для взаимодействия. Это достигается следующими средствами:
Идентификация ресурсов через URI: Каждый ресурс имеет уникальный адрес (URI).

     GET https://api.example.com/users/123

Использование стандартных HTTP-методов:
GET — для получения данных.
POST — для создания новых данных.
PUT или PATCH — для обновления данных.
DELETE — для удаления данных.
Ресурсы как представления: Ресурсы передаются в формате JSON, XML или другом формате.

🟠Кэширование
Ответы сервера могут быть кэшируемыми. Это уменьшает нагрузку на сервер и ускоряет работу клиента.

🟠Единообразие и слои
RESTful системы могут включать несколько слоев (например, балансировщики нагрузки, кеш-сервисы), но клиент взаимодействует только с сервером, не зная о внутренних слоях.

🟠Код по требованию (опционально)
Иногда сервер может передавать исполняемый код (например, JavaScript) клиенту, чтобы расширить его функциональность. Это не обязательно.

🚩Почему RESTful важен?

RESTful архитектура позволяет:
🟠Сделать API простым и понятным
Клиенты легко понимают, как обращаться к ресурсам (используя стандартные методы и адреса).
🟠Обеспечить гибкость
Клиенты и серверы могут развиваться независимо друг от друга.
🟠Поддерживать масштабируемость
RESTful API легко масштабируются, так как все запросы независимы друг от друга (статичность).
🟠Облегчить интеграцию
RESTful API поддерживают стандартизированные протоколы (HTTP), что делает интеграцию с другими сервисами проще.

Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2
🤔 Что понимаем под навыками работы с базами данных?

- Создание, чтение, обновление, удаление данных (CRUD);
- Понимание транзакций и индексов;
- Оптимизация запросов (анализ через EXPLAIN);
- Работа с SQL и NoSQL;
- Миграции схем, резервное копирование, восстановление;
- Проектирование нормализованной структуры БД.
Навыки включают как использование, так и поддержку, администрирование и тестирование баз данных.


Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4
🤔 В чем отличие асинхронности, threading'га и мультипроцессинга?

Асинхронность, threading и мультипроцессинг - это три различных подхода к параллельному выполнению задач каждый из которых имеет свои особенности и применения:

🚩Асинхронность (Asynchronous)

Асинхронность предполагает выполнение задач без ожидания их завершения. Используется для работы с вводом-выводом (I/O), таким как чтение или запись файлов, сетевые запросы и т. д. В асинхронном коде задачи не блокируют основной поток выполнения, что позволяет эффективно использовать ресурсы процессора. Примеры асинхронных моделей включают в себя асинхронные функции и ключевые слова в Python (например, async, await).

🚩Потоки (Threading)

Потоки позволяют выполнять несколько частей кода (потоков) параллельно в пределах одного процесса. Используются для выполнения многозадачных операций, которые могут быть распределены между несколькими ядрами процессора. Потоки могут выполняться параллельно, но могут также конкурировать за общие ресурсы, что может привести к проблемам синхронизации и безопасности. В некоторых языках, таких как Python, использование потоков ограничено из-за GIL (Global Interpreter Lock), что может снижать эффективность при использовании множества потоков для CPU-интенсивных задач.

🚩Мультипроцессинг (Multiprocessing)

Мультипроцессинг также позволяет выполнять несколько частей кода параллельно, но каждая часть выполняется в отдельном процессе. Каждый процесс имеет свое собственное пространство памяти, что делает мультипроцессинг более подходящим для многозадачных вычислений на многоядерных системах. Процессы обычно имеют больший накладные расходы по сравнению с потоками, поскольку каждый из них требует своих собственных ресурсов памяти и управления. Мультипроцессинг избегает проблемы GIL, что делает его более эффективным для CPU-интенсивных задач в Python и других языках.

Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2
🤔 Какие есть виды файловых объектов?

Бывают текстовые и бинарные файловые объекты. Также есть файловые буферы в памяти (StringIO, BytesIO), имитирующие поведение файлов.


Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2🔥2
🤔 Для чего можно использовать celery?

Celery - это очередь задач (task queue), которая позволяет выполнять задачи асинхронно и распределять их между различными рабочими процессами или узлами. Она обычно используется для выполнения долгих и трудоемких операций в фоновом режиме, таких как обработка задач веб-приложений, отправка электронных писем, генерация отчетов, обработка изображений, а также многие другие.

🚩Вот некоторые типичные сценарии использования Celery:

🟠Обработка задач в фоновом режиме
Позволяет обрабатывать задачи в фоновом режиме, что позволяет вашему веб-приложению быстро возвращать ответ пользователю, не ожидая завершения выполнения задачи. Это особенно полезно для выполнения операций, которые могут занимать длительное время, таких как обработка данных или генерация отчетов.

🟠Отправка электронных писем
Может использоваться для отправки электронных писем асинхронно. Это позволяет вашему приложению отправлять уведомления и письма пользователям без блокировки основного потока выполнения.

🟠Обработка изображений
Может использоваться для обработки изображений асинхронно. Например, вы можете использовать его для изменения размера изображений, преобразования форматов или применения фильтров без задержки ответа вашего приложения.

🟠Периодические задачи
Поддерживает периодические задачи, которые могут выполняться автоматически по расписанию. Это позволяет вам запускать задачи на основе времени, что особенно полезно для выполнения регулярных обновлений и обслуживания.

🟠Распределенные вычисления
Позволяет распределенно выполнять задачи на различных узлах или рабочих процессах, что позволяет обрабатывать большие объемы данных и операций параллельно.

Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5
🤔 Что быстрее: Python или C++?

C++ существенно быстрее. Он компилируется в машинный код, тогда как Python интерпретируемый и более медленный, но удобен в разработке.


Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍12💊6
🤔 Для чего нужны static method?

Статические методы (static methods) в Python используются для создания методов, которые связаны с классом, но не требуют доступа к экземпляру этого класса или к самим данным класса. Это методы, которые выполняют функции, связанные с классом, но не изменяют и не используют состояние экземпляра (атрибуты объекта) или состояние самого класса (атрибуты класса). Они могут быть вызваны на уровне класса, а не на уровне экземпляра класса.

🚩Как создать статический метод

Для создания статического метода в Python используется декоратор @staticmethod. Давайте рассмотрим пример:
class MyClass:
@staticmethod
def static_method(arg1, arg2):
return arg1 + arg2


🚩Пример использования статического метода

Вы можете вызывать статический метод как через сам класс, так и через его экземпляр:
result = MyClass.static_method(5, 10)
print(result) # Вывод: 15

my_instance = MyClass()
result = my_instance.static_method(3, 7)
print(result) # Вывод: 10


🚩Зачем нужны статические методы

🟠Логическая группировка
Статические методы позволяют логически группировать функции, которые связаны с классом, но не зависят от состояния конкретного экземпляра. Это помогает организовать код и делает его более читабельным.

🟠Удобство вызова
Иногда полезно вызывать метод, не создавая экземпляр класса. Например, если метод выполняет какую-то утилитарную функцию или обрабатывает данные, не связанные с объектом.

🟠Избежание изменений состояния
Поскольку статические методы не могут изменять состояние экземпляра или класса, их использование может способствовать созданию безопасного и предсказуемого кода.

🚩Сравнение с методами класса и экземпляра

🟠Методы экземпляра
Методы экземпляра (instance methods) принимают первым аргументом self, что позволяет им изменять состояние конкретного экземпляра класса.
  class MyClass:
def instance_method(self, value):
self.value = value


🟠Методы класса
Методы класса (class methods) принимают первым аргументом cls, что позволяет им изменять состояние самого класса.
  class MyClass:
class_variable = 0

@classmethod
def class_method(cls, value):
cls.class_variable = value


🟠Статические методы
Статические методы не принимают self или cls в качестве первого аргумента и не могут изменять состояние экземпляра или класса.
  class MyClass:
@staticmethod
def static_method(arg1, arg2):
return arg1 + arg2


Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6
🤔 Назови несколько dunder методов, которые есть в контекстном менеджере?

Контекстный менеджер использует специальные методы с двойными подчеркиваниями — enter и exit. Первый вызывается при входе в блок, например, with, и подготавливает ресурс. Второй вызывается при выходе из блока и занимается освобождением ресурса — например, закрывает файл или соединение.


Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2
🤔 Что такое CRUD?

CRUD — это аббревиатура из четырех основных операций с данными:

C (Create) – создание
R (Read) – чтение
U (Update) – обновление
D (Delete) – удаление

🚩Разберем CRUD на примере работы с базой данных в Python

🟠Create (Создание)
Добавление новой записи в базу данных.
import sqlite3

conn = sqlite3.connect("example.db")
cursor = conn.cursor()

# Создаем таблицу, если её нет
cursor.execute("CREATE TABLE IF NOT EXISTS users (id INTEGER PRIMARY KEY, name TEXT)")

# Добавляем пользователя
cursor.execute("INSERT INTO users (name) VALUES (?)", ("Алиса",))

conn.commit() # Сохраняем изменения
conn.close()


🟠Read (Чтение)
Получение данных из базы.
conn = sqlite3.connect("example.db")
cursor = conn.cursor()

cursor.execute("SELECT * FROM users")
users = cursor.fetchall() # Получаем все записи

for user in users:
print(user)

conn.close()


🟠Update (Обновление)
Изменение существующей записи.
conn = sqlite3.connect("example.db")
cursor = conn.cursor()

cursor.execute("UPDATE users SET name = ? WHERE id = ?", ("Боб", 1))

conn.commit()
conn.close()


🟠Delete (Удаление)
Удаление записи из базы.
conn = sqlite3.connect("example.db")
cursor = conn.cursor()

cursor.execute("DELETE FROM users WHERE id = ?", (1,))

conn.commit()
conn.close()


Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3🔥1
🤔 В чём преимущество синхронной разработки?

Синхронная разработка:
- проще в реализации и отладке;
- подходит для последовательных задач;
- требует меньше знаний об асинхронности;
- легко работает с средствами отладки и трассировки. Она особенно полезна в малых проектах или простых потоках данных, где нет интенсивной конкуренции за ресурсы.


Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍1🔥1💊1
🤔 Какие задачи хорошо параллелятся, какие плохо?

Параллельные вычисления — это выполнение нескольких задач одновременно, чтобы ускорить работу программы. Но не все задачи можно эффективно распараллелить.

🚩Независимые задачи (Embarrassingly Parallel Tasks)

Это задачи, которые можно выполнять полностью независимо друг от друга, без обмена данными.
Обработка изображений (фильтры, преобразования)
Генерация фрагментов видео
Рендеринг 3D-графики (каждый кадр рендерится отдельно)
Обучение моделей машинного обучения на разных данных (если без обмена параметрами)
from concurrent.futures import ProcessPoolExecutor
from PIL import Image

def process_image(image_path):
img = Image.open(image_path)
img = img.convert("L") # Перевод в черно-белый формат
img.save(f"processed_{image_path}")

images = ["img1.jpg", "img2.jpg", "img3.jpg"]

with ProcessPoolExecutor() as executor:
executor.map(process_image, images)


🚩Численные вычисления на больших данных (SIMD-операции, GPU-ускорение)

Если однотипные операции выполняются на большом массиве данных, их можно делать параллельно.
Умножение матриц (используется в нейросетях)
Обработка сигналов (FFT, фильтрация)
Физические симуляции
import numpy as np

A = np.random.rand(1000, 1000)
B = np.random.rand(1000, 1000)

C = A @ B # Быстрое умножение матриц (использует несколько ядер процессора)


🚩Веб-запросы и сетевые операции

Когда программа ждет ответа от сервера, процесс простаивает. Можно запускать запросы асинхронно, чтобы делать их параллельно.
Скачивание файлов
Парсинг веб-страниц
Вызовы API
import asyncio
import aiohttp

async def fetch(url):
async with aiohttp.ClientSession() as session:
async with session.get(url) as response:
return await response.text()

async def main():
urls = ["https://example.com", "https://google.com"]
tasks = [fetch(url) for url in urls]
responses = await asyncio.gather(*tasks)
print(responses)

asyncio.run(main())


Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4
🤔 Как обойти коллизию?

Коллизии обрабатываются внутри хеш-таблиц специальными алгоритмами, например, открытой адресацией. Python применяет внутренние механизмы для разрешения коллизий и сохранения производительности.


Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2🤔2💊2🔥1
🤔 Что такое паттерн Стратегия (Strategy) ?

Это поведенческий паттерн проектирования, который определяет семейство алгоритмов, инкапсулирует каждый из них и делает их взаимозаменяемыми. Паттерн "Стратегия" позволяет изменять алгоритмы независимо от клиентов, которые их используют.

🚩Зачем нужен данный паттерн?

🟠Изоляция алгоритмов
Позволяет инкапсулировать различные алгоритмы и использовать их независимо.
🟠Упрощение кода
Устраняет дублирование кода и упрощает классы, которые используют эти алгоритмы.
🟠Гибкость и расширяемость
Легко добавлять новые алгоритмы или изменять существующие без изменения клиентского кода.

🚩Как работает данный паттерн?

🟠Стратегия (Strategy)
Интерфейс, определяющий общий метод, который должны реализовать все алгоритмы.
🟠Конкретные стратегии (ConcreteStrategy)
Реализации различных алгоритмов, которые реализуют интерфейс стратегии.
🟠Контекст (Context)
Класс, использующий стратегию для выполнения задачи.

from abc import ABC, abstractmethod

# Интерфейс стратегии
class Strategy(ABC):
@abstractmethod
def sort(self, data):
pass

# Конкретные стратегии
class BubbleSortStrategy(Strategy):
def sort(self, data):
print("Sorting using Bubble Sort")
for i in range(len(data)):
for j in range(0, len(data)-i-1):
if data[j] > data[j+1]:
data[j], data[j+1] = data[j+1], data[j]

class QuickSortStrategy(Strategy):
def sort(self, data):
print("Sorting using Quick Sort")
self.quick_sort(data, 0, len(data) - 1)

def quick_sort(self, data, low, high):
if low < high:
pi = self.partition(data, low, high)
self.quick_sort(data, low, pi - 1)
self.quick_sort(data, pi + 1, high)

def partition(self, data, low, high):
pivot = data[high]
i = low - 1
for j in range(low, high):
if data[j] <= pivot:
i = i + 1
data[i], data[j] = data[j], data[i]
data[i + 1], data[high] = data[high], data[i + 1]
return i + 1

# Контекст
class SortingContext:
def __init__(self, strategy: Strategy):
self._strategy = strategy

def set_strategy(self, strategy: Strategy):
self._strategy = strategy

def sort(self, data):
self._strategy.sort(data)

# Клиентский код
data = [5, 2, 9, 1, 5, 6]

context = SortingContext(BubbleSortStrategy())
context.sort(data)
print(data) # [1, 2, 5, 5, 6, 9]

context.set_strategy(QuickSortStrategy())
data = [3, 7, 8, 5, 2, 1, 9, 5, 4]
context.sort(data)
print(data) # [1, 2, 3, 4, 5, 5, 7, 8, 9]


🚩Плюсы и минусы

Изоляция алгоритмов
Алгоритмы инкапсулируются в отдельные классы, что упрощает их замену и добавление.
Упрощение кода
Контекст использует стратегии, избегая громоздких условных операторов.
Гибкость и расширяемость
Легко добавлять новые стратегии без изменения существующего кода.
Усложнение структуры кода
Добавление множества классов стратегий может усложнить проект.
Контекст знает о стратегиях
Контекст должен знать о всех возможных стратегиях, чтобы иметь возможность их переключать.

🚩Когда использовать данный паттерн?

Когда есть несколько вариантов алгоритмов для выполнения задачи.
Когда нужно динамически выбирать алгоритм во время выполнения.
Когда необходимо избежать множества условных операторов для выбора алгоритма.

Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3🔥3
🤔 Как поменять значения двух переменных местами?

Это делается с использованием временного хранения или с возможностью множественного присваивания. Python предоставляет лаконичный способ, позволяющий поменять значения без дополнительных переменных.


Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2🔥1