Да, начиная с Python 3.7 порядок вставки в словарь сохраняется по умолчанию. Это означает, что словарь стал упорядоченной структурой данных.
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍9🔥1
В SQL можно объединять данные из двух таблиц без использования
JOIN, используя альтернативные методы. Подзапрос (
subquery) позволяет выбрать данные из одной таблицы, используя данные из другой. Допустим, у нас есть две таблицы:
employees (id, name, department_id) departments (id, name)SELECT name,
(SELECT name FROM departments WHERE id = employees.department_id) AS department_name
FROM employees;
Можно фильтровать данные из одной таблицы, проверяя наличие значений в другой.
SELECT name
FROM employees
WHERE department_id IN (SELECT id FROM departments);
Если таблицы имеют схожие колонки, можно объединить их с
UNION. SELECT id, name, email FROM users_old
UNION
SELECT id, name, email FROM users_new;
Хотя
CROSS JOIN делает декартово произведение, его можно фильтровать WHERE, имитируя INNER JOIN. SELECT e.name, d.name AS department
FROM employees e, departments d
WHERE e.department_id = d.id;
Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6
- Create (создание),
- Read (чтение),
- Update (обновление),
- Delete (удаление).
Используется как в базах данных, так и в REST API.
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍8
Это специальный метод, который вызывается автоматически, когда объект класса уничтожается. В Python этот метод называется
__del__(). Деструктор используется для выполнения операций очистки, таких как освобождение ресурсов или выполнение завершающих действий перед тем, как объект будет удален из памяти.Определяется внутри класса с помощью метода
__del__(). class FileManager:
def __init__(self, filename):
self.file = open(filename, 'w')
print(f"Файл {filename} открыт для записи.")
def write_data(self, data):
self.file.write(data)
def __del__(self):
self.file.close()
print("Файл закрыт.")
FileManager имеет конструктор __init__(), который открывает файл для записи.write_data() записывает данные в файл.__del__() закрывает файл, когда объект FileManager уничтожается.Когда объект класса создается, вызывается конструктор. Когда объект больше не нужен, вызывается деструктор:
manager = FileManager('example.txt')
manager.write_data('Hello, world!')
# Когда объект manager больше не нужен, вызывается деструктор и файл закрываетсяPython использует механизм сборки мусора для автоматического управления памятью. Когда объект больше не используется (например, нет активных ссылок на него), сборщик мусора удаляет объект и вызывает его деструктор.
Точное время вызова деструктора зависит от работы сборщика мусора. Это означает, что нельзя гарантировать момент вызова деструктора. Поэтому для критических операций лучше использовать явное управление ресурсами, например, с помощью контекстных менеджеров (
with).Для явного управления ресурсами и их освобождения в предсказуемый момент лучше использовать контекстные менеджеры.
with open('example.txt', 'w') as file:
file.write('Hello, world!')
# Файл автоматически закрывается после выхода из блока withСтавь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5
Это шаблон для подстановки целого числа в строку при форматировании в старом стиле.
Сколько может быть родителей и наследников у класса?
– Родителей может быть несколько (множественное наследование).
– Наследников — сколько угодно, класс может быть базой для многих потомков.
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
1🤔4👍1🔥1
Идемпотентность — это свойство операции, при котором повторное выполнение приводит к тому же результату, что и первое.
если операция выполнится повторно (из-за ошибки сети), она не приведёт к неожиданному результату.
позволяет избежать дублирования данных или неожиданных изменений.
гарантирует, что повторные вызовы API не создадут дубликатов.
В веб-разработке идемпотентность важна для API-запросов, чтобы случайные повторные вызовы не привели к непредсказуемым последствиям.
Этот запрос идемпотентен — если отправить его 10 раз, пользователь "Alice" останется тем же.
POST /users { "name": "Alice" }В SQL запросы
SELECT и DELETE часто идемпотентны, а INSERT — нет. DELETE FROM users WHERE id = 5;
Этот запрос идемпотентен — удаление пользователя с ID = 5 несколько раз не изменит систему (если он уже удалён).
INSERT INTO users (name) VALUES ('Alice');Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍1
Media is too big
VIEW IN TELEGRAM
На программиста, тестировщика, аналитика, проджекта и другие IT профы.
Есть собесы от ведущих компаний: Сбер, Яндекс, ВТБ, Тинькофф, Озон, Wildberries и т.д.
🎯 Переходи по ссылке и присоединяйся к базе, чтобы прокачать свои шансы на успешное трудоустройство!
Please open Telegram to view this post
VIEW IN TELEGRAM
- Гибкость схемы — можно хранить разные поля в разных документах;
- Горизонтальное масштабирование;
- Лучше подходит для больших объёмов неструктурированных данных;
- Идеален для высокой скорости записи и чтения, например, в логировании, кэшировании.
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5🔥3
Использование чисел в качестве ключей в словарях Python – это достаточно распространённый случай. Однако у этого подхода есть несколько нюансов, которые нужно учитывать для избежания ошибок.
Ключи в словаре должны быть хешируемыми, поскольку словари в Python основаны на хеш-таблицах. Хешируемость означает, что объект имеет неизменное значение хеша в течение его жизни. Числа (как
int, так и float) являются хешируемыми, поэтому их можно использовать в качестве ключей.d = {1: "один", 2: "два"}
print(d[1]) # "один"Python не делает различий между
int и float, если их значения равны. Это связано с тем, что у них одинаковое хеш-значение при равенстве. d = {1: "один", 1.0: "float один", 2: "два"}
print(d) # {1: 'float один', 2: 'два'}Числа с плавающей запятой (
float) иногда ведут себя непредсказуемо из-за ошибок округления, которые возникают из-за особенностей представления чисел в памяти компьютера.d = {0.1 + 0.2: "значение"} # 0.1 + 0.2 не равно точно 0.3 из-за округления
print(d.get(0.3)) # None, ключ не найден!Использование чисел как ключей в словарях эффективно с точки зрения производительности. Поскольку числа хешируются быстро и занимают меньше памяти, операции добавления, удаления и поиска выполняются очень быстро.
Если ключами словаря являются числа, то при обработке данных (например, чтении из файла или API) можно случайно преобразовать их в строки, что приведёт к созданию новых ключей вместо использования существующих.
d = {1: "один", 2: "два"}
print(d.get("1")) # None, строка "1" и число 1 – это разные ключи!Если вы используете пользовательские объекты как ключи и они ведут себя как числа (например, реализуют методы
__hash__ и __eq__), то их поведение должно быть совместимо с ожидаемым использованием. class MyNumber:
def __init__(self, value):
self.value = value
def __hash__(self):
return hash(self.value)
def __eq__(self, other):
return self.value == other.value
d = {MyNumber(1): "один"}
print(d[MyNumber(1)]) # "один"
Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3
В asyncio "табл-объекты" напрямую не существуют как термин, но в контексте часто имеются в виду:
- Future — объект, представляющий будущий результат;
- Task — обёртка над корутиной, запускающая её в event loop;
- Coroutine — функция, определённая через async def, которую можно "ожидать". Все три участвуют в управлении асинхронными операциями.
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥3👍1💊1
Асинхронность (
asyncio) в Python не выполняет код параллельно, а переключается между задачами во время ожидания (I/O-bound). Если в
async-функции делать тяжёлые вычисления (CPU-bound), это блокирует asyncio, потому что в Python есть GIL (Global Interpreter Lock). Асинхронность позволяет выполнять задачи без блокировки, но только если они ждут чего-то (файлы, сеть, БД).
import asyncio
import aiohttp
async def fetch(url):
async with aiohttp.ClientSession() as session:
async with session.get(url) as response:
return await response.text()
async def main():
urls = ["https://example.com"] * 5
results = await asyncio.gather(*(fetch(url) for url in urls))
asyncio.run(main())
Если в
async-функции делать тяжёлые вычисления, Python не сможет переключаться между задачами. import asyncio
async def heavy_task(n):
print(f"Вычисляю {n}...")
total = sum(i**2 for i in range(n)) # Долгий процесс
return total
async def main():
await asyncio.gather(heavy_task(10**7), heavy_task(10**7))
asyncio.run(main())
В Python 3.9+ можно выполнять CPU-задачи в отдельных потоках, не блокируя
asyncio. import asyncio
def heavy_computation(n):
return sum(i**2 for i in range(n))
async def main():
result = await asyncio.to_thread(heavy_computation, 10**7)
print(result)
asyncio.run(main())
Так как Python использует GIL, единственный способ выполнять настоящий параллелизм — это
multiprocessing.import asyncio
import multiprocessing
def heavy_computation(n):
return sum(i**2 for i in range(n))
async def main():
loop = asyncio.get_running_loop()
with multiprocessing.Pool() as pool:
result = await loop.run_in_executor(pool, heavy_computation, 10**7)
print(result)
asyncio.run(main())
Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7
Кроме магических (init, str, len и др.), часто используются обычные методы объектов:
- Для строк: .lower(), .upper(), .replace(), .split(), .join().
- Для списков: .append(), .extend(), .remove(), .pop(), .sort().
- Для словарей: .get(), .items(), .keys(), .values(), .update().
- Для множеств: .add(), .discard(), .union(), .intersection().
Эти методы составляют ядро повседневной работы с типами Python и не являются "магическими", но критически важны.
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5🔥2
Выбор типа тестирования зависит от целей, стадии разработки и текущих проблем. Чтобы определить, какие тесты нужны, стоит ответить на вопросы:
Что тестируем? (код, API, UI, производительность и т. д.)
Какие риски? (где может сломаться, критичность ошибки)
Какой этап разработки? (новый код, рефакторинг, релиз)
Нужны: Юнит-тесты
Тестируем функции и классы отдельно.
def add(a, b):
return a + b
def test_add():
assert add(2, 3) == 5 # ✅ Юнит-тест
Нужны: Интеграционные тесты
Проверяем работу всей системы вместе.
def test_api():
response = requests.get("https://api.example.com/data")
assert response.status_code == 200
Нужны: Функциональные и регрессионные тесты
Проверяем ключевые сценарии и старый функционал.
def test_login():
assert login("user", "password") == "Success"
Нужны: UI-тесты (Selenium, Playwright)
Проверяем нажатие кнопок, формы и отображение страниц.
from selenium import webdriver
driver = webdriver.Chrome()
driver.get("https://example.com")
assert "Example" in driver.title
Нужны: Нагрузочные тесты (Load Testing)
Используем
locust, JMeter, k6, чтобы проверить сколько пользователей выдержит сервер. from locust import HttpUser, task
class MyUser(HttpUser):
@task
def test_homepage(self):
self.client.get("/")
Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5🔥2
Технически — нет.
GET не имеет тела запроса, а файл — это большой объём данных, требующий формата и тела передачи, что характерно для POST или PUT.
Передача файла всегда должна идти через POST (или PUT), с корректным Content-Type.
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥7👍4
Моржовый оператор (
:=) – это новый оператор, появившийся в Python 3.8, который позволяет присваивать значение переменной прямо внутри выражения. Обычно мы записываем код так:
value = len(my_list) # Сначала присваиваем
if value > 10: # Потом используем
print("Список большой")
С
:= можно совместить оба действия if (value := len(my_list)) > 10:
print("Список большой")
В циклах (избегаем лишних вычислений). Вместо:
data = input("Введите строку: ")
while data != "exit":
print("Вы ввели:", data)
data = input("Введите строку: ")С
:= можно записать короче:while (data := input("Введите строку: ")) != "exit":
print("Вы ввели:", data)В
if и while (проверяем и присваиваем одновременно) Без
:=text = input("Введите слово: ")
if len(text) > 5:
print(f"Слово длинное ({len(text)} символов)")С
:=:if (length := len(text)) > 5:
print(f"Слово длинное ({length} символов)")
В списковых включениях (list comprehensions)
Без
:=:numbers = [random.randint(1, 100) for _ in range(10)]
filtered = [num for num in numbers if num % 2 == 0]
С
:=:filtered = [num for _ in range(10) if (num := random.randint(1, 100)) % 2 == 0]
Если код становится сложнее для чтения
if (a := func()) and (b := another_func(a)) > 10:
...
Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍9🤔1
Apache Airflow — это платформа для оркестрации рабочих процессов (workflow), особенно в задачах обработки данных. Она позволяет описывать пайплайны в виде DAG (направленного графа задач), управлять зависимостями, планировать и отслеживать выполнение.
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4🔥2🤔1
Когда пользователь отправляет HTTP-запрос (например, открывает страницу сайта), Django проходит несколько этапов обработки, прежде чем вернуть ответ.
Когда клиент (браузер, API) отправляет запрос, его принимает WSGI/ASGI-сервер (
Gunicorn, Daphne). Если проект синхронный → работает через WSGI (
wsgi.py). Если проект асинхронный → через ASGI (
asgi.py). GET /hello/ HTTP/1.1
Host: example.com
User-Agent: Mozilla/5.0
Django превращает HTTP-запрос в объект
HttpRequest, который передаётся в view. def my_view(request):
print(request.iss.onethod) # 'GET'
print(request.path) # '/hello/'
print(request.GET) # {'name': 'Alice'}
Прежде чем запрос дойдёт до
view, Django проходит через мидлвари, которые могут: Проверять авторизацию (
AuthenticationMiddleware). Защищать от CSRF (
CsrfViewMiddleware). Перенаправлять запросы (
CommonMiddleware). MIDDLEWARE = [
"django.middleware.security.SecurityMiddleware",
"django.middleware.common.CommonMiddleware",
"django.middleware.csrf.CsrfViewMiddleware",
"django.contrib.sessions.middleware.SessionMiddleware",
"django.contrib.auth.middleware.AuthenticationMiddleware",
]
Django ищет, какая функция (
view) должна обработать этот URL. from django.urls import path
from myapp.views import hello_view
urlpatterns = [
path("hello/", hello_view), # Запрос "/hello/" попадёт в hello_view
]
Когда Django находит подходящее представление (
view), оно вызывается. from django.http import HttpResponse
def hello_view(request):
return HttpResponse("Привет, мир!")
Django берёт
HttpResponse и передаёт его обратно через middleware (например, сжатие, защита, заголовки безопасности). HTTP/1.1 200 OK
Content-Type: text/html
Content-Length: 12
Привет, мир!
На последнем этапе WSGI/ASGI-сервер отправляет ответ обратно браузеру или API-клиенту.
Клиент (браузер) → WSGI/ASGI → Django Middleware → URL Dispatcher → View → Response → Клиент
Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7💊1
HTTP-заголовки содержат метаинформацию о запросе или ответе. Примеры:
- Информация о клиенте: User-Agent, Referer
- Тип содержимого: Content-Type, Accept
- Аутентификация: Authorization
- Кэширование: Cache-Control, ETag
- Безопасность: Strict-Transport-Security, CSP
- Куки: Cookie, Set-Cookie
Заголовки используются для управления поведением запроса и обработки данных на стороне сервера и клиента.
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍1🔥1