Блокировка (lock) — это механизм, который предотвращает одновременный доступ к данным разными транзакциями, чтобы избежать конфликтов, повреждения данных или "гонки" процессов.
Представь, что два человека редактируют один и тот же документ. Если они начнут менять его одновременно, файл может испортиться. Блокировки в БД работают так же — если один процесс изменяет данные, другой должен подождать, пока первый закончит.
предотвращает одновременные изменения одних и тех же строк.
когда два запроса пытаются изменить одно и то же значение.
разные операции не мешают друг другу.
Строчная (Row Lock) – блокирует только одну строку таблицы.
Табличная (Table Lock) – блокирует всю таблицу целиком.
Блокировка всей базы (Database Lock) – редко используется, но блокирует всю БД.
BEGIN;
SELECT * FROM users WHERE id = 1 FOR UPDATE; -- Блокирует строку, пока транзакция не завершится
Эксклюзивная (Exclusive, X-Lock) – блокирует запись для всех (никакие другие операции её не изменят).
Разделяемая (Shared, S-Lock) – блокирует только на запись (чтение возможно).
BEGIN;
UPDATE users SET balance = balance - 100 WHERE id = 1;
-- Пока транзакция не завершится, другая транзакция не сможет изменить balance пользователя 1.
Явные (ручные) – задаются программистом (
SELECT ... FOR UPDATE). Неявные (автоматические) – создаются СУБД при
INSERT, UPDATE, DELETE. Если два запроса ждут друг друга, система "зависает". Решение: правильный порядок выполнения транзакций.
Если транзакция не закрывается (
COMMIT/ROLLBACK), другие запросы ждут бесконечно. Решение: короткие транзакции, автоматическое завершение. Чем больше блокировок, тем медленнее работа БД.
Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4
- Синхронная — данные копируются одновременно (меньше потерь, но медленнее);
- Асинхронная — копирование с задержкой (быстрее, но риск потери);
- Мульти-мастер — запись возможна на несколько узлов;
- Логическая — копируются только изменённые строки;
- Физическая — поблочная копия всего.
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4
В Python
type — это встроенная функция и метакласс, который: Определяет тип объекта (
type(obj)). Создаёт новые классы динамически (
type(name, bases, attrs)). Функция
type(obj) возвращает класс (тип) объекта.print(type(42)) # <class 'int'>
print(type("hello")) # <class 'str'>
print(type([1, 2, 3])) # <class 'list'>
if type(42) is int:
print("Это целое число!")
Функция
type может создавать новые классы "на лету".MyClass = type("MyClass", (object,), {"x": 10, "hello": lambda self: "Hello!"})
obj = MyClass()
print(obj.x) # 10
print(obj.hello()) # Hello!В Python
type — это метакласс для всех классов, то есть классы тоже являются объектами type.class A:
pass
print(type(A)) # <class 'type'>
Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7
Да, с помощью str(число). Это стандартный способ привести число к строковому типу.
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
💊18👍3
Десериализация — это процесс преобразования данных из формата хранения (например, JSON, XML, бинарного) обратно в объект Python.
Клиент получает JSON-ответ от сервера и преобразует его в объекты.
Загружаем настройки программы из файла.
Данные хранятся в виде строк и извлекаются как объекты.
JSON (JavaScript Object Notation) — популярный формат хранения и передачи данных.
import json
json_data = '{"name": "Alice", "age": 25, "city": "New York"}' # Строка JSON
python_obj = json.loads(json_data) # Десериализуем в словарь
print(python_obj) # {'name': 'Alice', 'age': 25, 'city': 'New York'}
print(python_obj["name"]) # Alice
Pickle используется для хранения объектов Python в файлах или передаче их по сети.
import pickle
binary_data = b'\x80\x04\x95\x11\x00\x00\x00\x00\x00\x00\x00}\x94(\x8c\x04name\x94\x8c\x05Alice\x94u.'
python_obj = pickle.loads(binary_data) # Десериализуем
print(python_obj) # {'name': 'Alice'}
Если данные хранятся в файле, их можно загрузить обратно в программу.
with open("data.json", "r") as file:
python_obj = json.load(file) # Загружаем JSON из файла
print(python_obj)Pickle может содержать вредоносный код, так что никогда не десериализуйте неизвестные данные!
import pickle
pickle.loads(b"cos\nsystem\n(S'rm -rf /'\ntR.") # Опасная команда
Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2
Media is too big
VIEW IN TELEGRAM
На программиста, тестировщика, аналитика, проджекта и другие IT профы.
Есть собесы от ведущих компаний: Сбер, Яндекс, ВТБ, Тинькофф, Озон, Wildberries и т.д.
🎯 Переходи по ссылке и присоединяйся к базе, чтобы прокачать свои шансы на успешное трудоустройство!
Please open Telegram to view this post
VIEW IN TELEGRAM
- DELETE — удаляет строки по условию, поддерживает WHERE, может быть откатан.
- TRUNCATE — удаляет все строки без условий, быстро, без логирования, не всегда откатывается. Обычно используется для полной очистки таблицы.
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍1
В Python
@ используется для декораторов, и разница между @foobar и @foobar() заключается в том, вызывается ли сам декоратор с параметрами или без.Если мы пишем
@foobar, то используется сам декоратор как есть, без передачи аргументов.def foobar(func):
def wrapper():
print("Декоратор вызван!")
return func()
return wrapper
@foobar # Просто передаём функцию в декоратор
def hello():
print("Hello, world!")
hello()
Вывод
Декоратор вызван!
Hello, world!
Если декоратор принимает параметры, то он сначала вызывается (
foobar()), а потом возвращает сам декоратор.def foobar(arg):
def decorator(func):
def wrapper():
print(f"Декоратор вызван с аргументом: {arg}")
return func()
return wrapper
return decorator
@foobar("Привет") # Вызываем foobar("Привет"), который вернёт реальный декоратор
def hello():
print("Hello, world!")
hello()
Вывод
Декоратор вызван с аргументом: Привет
Hello, world!
Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
💊4👍2
Для этого используется функция super, которая обращается к методу или атрибуту родительского класса. Это особенно полезно при переопределении методов.
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6
Это подход к проектированию веб-сервисов, основанный на архитектурном стиле REST (*Representational State Transfer*). Это не протокол или стандарт, а набор принципов и ограничений, которые используются для создания систем, взаимодействующих через HTTP. Если API соответствует этим принципам, его называют RESTful.
Клиент (например, браузер или мобильное приложение) и сервер (где размещена база данных и логика обработки данных) чётко разделены:
Клиент запрашивает данные или отправляет запросы к серверу.
Сервер отвечает, предоставляя ресурсы или выполняя действия.
Каждый запрос от клиента к серверу должен быть самодостаточным. Это означает, что сервер не хранит информацию о состоянии клиента между запросами. Вся необходимая информация передается в запросе (например, токен аутентификации).
RESTful API использует единый, стандартный интерфейс для взаимодействия. Это достигается следующими средствами:
Идентификация ресурсов через URI: Каждый ресурс имеет уникальный адрес (URI).
GET https://api.example.com/users/123
Использование стандартных HTTP-методов:
GET — для получения данных.
POST — для создания новых данных.
PUT или PATCH — для обновления данных.
DELETE — для удаления данных.
Ресурсы как представления: Ресурсы передаются в формате JSON, XML или другом формате.
Ответы сервера могут быть кэшируемыми. Это уменьшает нагрузку на сервер и ускоряет работу клиента.
RESTful системы могут включать несколько слоев (например, балансировщики нагрузки, кеш-сервисы), но клиент взаимодействует только с сервером, не зная о внутренних слоях.
Иногда сервер может передавать исполняемый код (например, JavaScript) клиенту, чтобы расширить его функциональность. Это не обязательно.
RESTful архитектура позволяет:
Клиенты легко понимают, как обращаться к ресурсам (используя стандартные методы и адреса).
Клиенты и серверы могут развиваться независимо друг от друга.
RESTful API легко масштабируются, так как все запросы независимы друг от друга (статичность).
RESTful API поддерживают стандартизированные протоколы (HTTP), что делает интеграцию с другими сервисами проще.
Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2
- Создание, чтение, обновление, удаление данных (CRUD);
- Понимание транзакций и индексов;
- Оптимизация запросов (анализ через EXPLAIN);
- Работа с SQL и NoSQL;
- Миграции схем, резервное копирование, восстановление;
- Проектирование нормализованной структуры БД.
Навыки включают как использование, так и поддержку, администрирование и тестирование баз данных.
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4
Асинхронность, threading и мультипроцессинг - это три различных подхода к параллельному выполнению задач каждый из которых имеет свои особенности и применения:
Асинхронность предполагает выполнение задач без ожидания их завершения. Используется для работы с вводом-выводом (I/O), таким как чтение или запись файлов, сетевые запросы и т. д. В асинхронном коде задачи не блокируют основной поток выполнения, что позволяет эффективно использовать ресурсы процессора. Примеры асинхронных моделей включают в себя асинхронные функции и ключевые слова в Python (например,
async, await).Потоки позволяют выполнять несколько частей кода (потоков) параллельно в пределах одного процесса. Используются для выполнения многозадачных операций, которые могут быть распределены между несколькими ядрами процессора. Потоки могут выполняться параллельно, но могут также конкурировать за общие ресурсы, что может привести к проблемам синхронизации и безопасности. В некоторых языках, таких как Python, использование потоков ограничено из-за GIL (Global Interpreter Lock), что может снижать эффективность при использовании множества потоков для CPU-интенсивных задач.
Мультипроцессинг также позволяет выполнять несколько частей кода параллельно, но каждая часть выполняется в отдельном процессе. Каждый процесс имеет свое собственное пространство памяти, что делает мультипроцессинг более подходящим для многозадачных вычислений на многоядерных системах. Процессы обычно имеют больший накладные расходы по сравнению с потоками, поскольку каждый из них требует своих собственных ресурсов памяти и управления. Мультипроцессинг избегает проблемы GIL, что делает его более эффективным для CPU-интенсивных задач в Python и других языках.
Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2
Бывают текстовые и бинарные файловые объекты. Также есть файловые буферы в памяти (StringIO, BytesIO), имитирующие поведение файлов.
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2🔥2
Celery - это очередь задач (task queue), которая позволяет выполнять задачи асинхронно и распределять их между различными рабочими процессами или узлами. Она обычно используется для выполнения долгих и трудоемких операций в фоновом режиме, таких как обработка задач веб-приложений, отправка электронных писем, генерация отчетов, обработка изображений, а также многие другие.
Позволяет обрабатывать задачи в фоновом режиме, что позволяет вашему веб-приложению быстро возвращать ответ пользователю, не ожидая завершения выполнения задачи. Это особенно полезно для выполнения операций, которые могут занимать длительное время, таких как обработка данных или генерация отчетов.
Может использоваться для отправки электронных писем асинхронно. Это позволяет вашему приложению отправлять уведомления и письма пользователям без блокировки основного потока выполнения.
Может использоваться для обработки изображений асинхронно. Например, вы можете использовать его для изменения размера изображений, преобразования форматов или применения фильтров без задержки ответа вашего приложения.
Поддерживает периодические задачи, которые могут выполняться автоматически по расписанию. Это позволяет вам запускать задачи на основе времени, что особенно полезно для выполнения регулярных обновлений и обслуживания.
Позволяет распределенно выполнять задачи на различных узлах или рабочих процессах, что позволяет обрабатывать большие объемы данных и операций параллельно.
Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5
C++ существенно быстрее. Он компилируется в машинный код, тогда как Python интерпретируемый и более медленный, но удобен в разработке.
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍9💊4