Это объект, который:
- Может быть передан как аргумент.
- Может быть возвращён из функции.
- Может быть присвоен переменной. В Python функции являются объектами первого класса.
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6🔥1
filter() — это встроенная функция Python, которая отбирает элементы из последовательности по заданному условию. filter(function, iterable)
Пример 1: Фильтрация чётных чисел
numbers = [1, 2, 3, 4, 5, 6]
# Оставляем только чётные числа
even_numbers = filter(lambda x: x % 2 == 0, numbers)
print(list(even_numbers)) # [2, 4, 6]
Пример 2: Фильтрация строк по длине
words = ["apple", "kiwi", "banana", "cherry"]
# Оставляем только слова длиной больше 5 символов
long_words = filter(lambda word: len(word) > 5, words)
print(list(long_words)) # ['banana', 'cherry']
Пример 3: Фильтрация
None и пустых значений values = [None, 0, "", "hello", 42, [], {}]
# Оставляем только "истинные" значения
filtered_values = filter(None, values)
print(list(filtered_values)) # ['hello', 42]Пример 4: Использование
filter() с def def is_positive(n):
return n > 0
numbers = [-5, -2, 0, 3, 7, -1]
positive_numbers = filter(is_positive, numbers)
print(list(positive_numbers)) # [3, 7]
Более короткий и читаемый код
# С `filter()`
even_numbers = list(filter(lambda x: x % 2 == 0, numbers))
# С `for` + `if`
even_numbers = [x for x in numbers if x % 2 == 0]
Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5
O(n) означает, что время выполнения пропорционально количеству элементов. O(n²) — значит, число операций растёт квадратично. Например, при 1 000 элементах:
- O(n) ≈ 1 000 операций;
- O(n²) ≈ 1 000 000 операций.
Поэтому линейная сложность значительно быстрее при больших объёмах данных.
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍9
dict comprehension (генератор словаря) — это способ быстро создать словарь с помощью компактного синтаксиса, похожего на list comprehension. squares = {x: x**2 for x in range(1, 6)}
print(squares)Вывод
{1: 1, 2: 4, 3: 9, 4: 16, 5: 25}Оставляем только чётные числа:
squares = {x: x**2 for x in range(1, 11) if x % 2 == 0}
print(squares)Вывод
{2: 4, 4: 16, 6: 36, 8: 64, 10: 100}Создаём словарь из списка пар (
name → длина слова) names = ["Alice", "Bob", "Charlie"]
name_lengths = {name: len(name) for name in names}
print(name_lengths)
Вывод
{'Alice': 5, 'Bob': 3, 'Charlie': 7}Инвертируем словарь
{ключ: значение} → {значение: ключ} original = {"a": 1, "b": 2, "c": 3}
inverted = {v: k for k, v in original.items()}
print(inverted)Вывод
{1: 'a', 2: 'b', 3: 'c'}Объединяем два списка в словарь
keys = ["name", "age", "city"]
values = ["Alice", 25, "New York"]
person = {k: v for k, v in zip(keys, values)}
print(person)
Вывод
{'name': 'Alice', 'age': 25, 'city': 'New York'}Разделяем числа на чётные и нечётные
numbers = range(1, 6)
parity = {x: "чётное" if x % 2 == 0 else "нечётное" for x in numbers}
print(parity)
Вывод
{1: 'нечётное', 2: 'чётное', 3: 'нечётное', 4: 'чётное', 5: 'нечётное'}Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4
Эта функция отбирает только те элементы, которые соответствуют заданному условию. Например, можно выбрать только положительные числа из списка или отфильтровать строки, содержащие определённое слово.
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2
Host (хост) — это устройство или сервер, подключённый к сети, который может предоставлять или запрашивать данные.
GET /index.html HTTP/1.1
Host: example.com
Когда браузер запрашивает сайт, он отправляет заголовок
Host, чтобы сервер знал, какой сайт нужно отдать. GET / HTTP/1.1
Host: google.com
User-Agent: Mozilla/5.0
Host — это доменное имя, привязанное к IP-адресу.
-
example.com → 192.168.1.100 -
mail.example.com → 192.168.1.101 127.0.0.1 mysite.local
Внутри сети устройства тоже считаются хостами (
192.168.1.10, 192.168.1.20). localhost (127.0.0.1) — это всегда локальный компьютер.Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3💊1
gather() используется для параллельного выполнения нескольких корутин. Она собирает их в одну задачу и возвращает результаты в виде списка. Все задачи выполняются одновременно, а gather() ждёт завершения всех.
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥5👍1🤔1
Асинхронность в Python позволяет не блокировать выполнение программы во время ожидания операций ввода-вывода (I/O). Это делает её намного быстрее в задачах, где программа тратит много времени на ожидание (например, загрузка файлов, работа с сетью, запросы к базам данных).
В обычном (синхронном) коде каждая операция ждёт завершения предыдущей.
import requests
import time
start = time.time()
def fetch(url):
response = requests.get(url) # Ждём ответа от сервера
return response.text
urls = ["https://example.com"] * 3
for url in urls:
fetch(url) # Ждём каждый запрос
print("Время выполнения:", time.time() - start)
Асинхронность в Python использует event loop (цикл событий), который позволяет не ждать выполнения операции, а переключаться на другие задачи.
import asyncio
import aiohttp
import time
start = time.time()
async def fetch(url):
async with aiohttp.ClientSession() as session:
async with session.get(url) as response:
return await response.text()
async def main():
urls = ["https://example.com"] * 3
tasks = [fetch(url) for url in urls]
await asyncio.gather(*tasks) # Запускаем все запросы одновременно
asyncio.run(main())
print("Время выполнения:", time.time() - start)
Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3
rebase — это операция в Git, которая позволяет переписать историю коммитов, подставляя текущую ветку поверх другой. Это полезно для создания линейной, чистой истории.
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5
Для сортировки списка словарей по определенному полю в Python удобно использовать функцию sorted() или метод sort(). Оба подхода позволяют указать ключ сортировки с помощью параметра key, где можно передать либо функцию, либо лямбда-выражение, которое извлекает значение из словаря для сортировки.
Списки словарей часто используются для хранения структурированных данных. Например, вы можете иметь список сотрудников, где каждый сотрудник представлен в виде словаря с полями, такими как имя, возраст и зарплата. Сортировка по определенному полю позволяет упорядочить данные, чтобы ими было проще пользоваться или отображать.
Эта функция возвращает новый отсортированный список.
employees = [
{"name": "Alice", "age": 30, "salary": 70000},
{"name": "Bob", "age": 25, "salary": 50000},
{"name": "Charlie", "age": 35, "salary": 120000}
]
# Сортировка по возрасту
sorted_employees = sorted(employees, key=lambda x: x["age"])
print(sorted_employees)
Результат
[{'name': 'Bob', 'age': 25, 'salary': 50000},
{'name': 'Alice', 'age': 30, 'salary': 70000},
{'name': 'Charlie', 'age': 35, 'salary': 120000}]
Этот метод изменяет существующий список.
employees = [
{"name": "Alice", "age": 30, "salary": 70000},
{"name": "Bob", "age": 25, "salary": 50000},
{"name": "Charlie", "age": 35, "salary": 120000}
]
# Сортировка по зарплате
employees.sort(key=lambda x: x["salary"])
print(employees)
Результат
[{'name': 'Bob', 'age': 25, 'salary': 50000},
{'name': 'Alice', 'age': 30, 'salary': 70000},
{'name': 'Charlie', 'age': 35, 'salary': 120000}]
Установите параметр reverse=True, чтобы отсортировать в порядке убывания.
sorted_employees_desc = sorted(employees, key=lambda x: x["age"], reverse=True)
print(sorted_employees_desc)
Это более эффективный способ, чем лямбда-функция, особенно для больших данных.
from operator import itemgetter
sorted_employees = sorted(employees, key=itemgetter("age"))
print(sorted_employees)
Если поле может отсутствовать в некоторых словарях, можно использовать параметр key для обработки таких ситуаций.
employees = [
{"name": "Alice", "age": 30},
{"name": "Bob"},
{"name": "Charlie", "age": 35}
]
sorted_employees = sorted(employees, key=lambda x: x.get("age", 0))
print(sorted_employees)
Результат
[{'name': 'Bob'},
{'name': 'Alice', 'age': 30},
{'name': 'Charlie', 'age': 35}]Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5
23 декабря (уже завтра!) в 19:00 по мск приходи на прямой эфир с реальным собеседованием на Middle разработчика.
Почему точно нужно прийти:
Это бесплатно. Эфир проходит в рамках менторской программы от ШОРТКАТ для Python-разработчиков, которые хотят повысить свой грейд, ЗП и прокачать скиллы.
Переходи в нашего бота, чтобы получить ссылку на эфир → @shortcut_py_bot
Реклама.
О рекламодателе.
Please open Telegram to view this post
VIEW IN TELEGRAM
- GET — запрашивает данные, передаёт параметры в URL, ничего не меняет на сервере.
- POST — отправляет данные (формы, JSON), используется для создания/обработки.
- HEAD — как GET, но без тела ответа, только заголовки (для проверки существования, длины и пр.).
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2
В Python все данные делятся на изменяемые (mutable) и неизменяемые (immutable)
После создания их нельзя изменить!
x = 10
print(id(x)) # 140735598722544 (адрес в памяти)
x = x + 5 # Создаётся новый объект!
print(id(x)) # 140735598722704 (новый адрес)
Пример:
str неизменяемая s = "hello"
print(id(s)) # 140735598723664
s = s + " world" # Создаётся новая строка!
print(id(s)) # 140735598724240 (новый адрес)
Можно менять их содержимое без создания нового объекта.
lst = [1, 2, 3]
print(id(lst)) # 140735598722544
lst.append(4) # Изменяем список
print(id(lst)) # 140735598722544 (адрес остался тот же!)
Пример:
dict изменяемый d = {"name": "Alice"}
print(id(d)) # 140735598723664
d["age"] = 25 # Добавляем ключ
print(id(d)) # 140735598723664 (адрес не изменился!)Неизменяемые объекты безопаснее для ключей
dict и set d = {}
d[[1, 2, 3]] = "Ошибка!" # ❌ TypeError: unhashable type: 'list'Используем
tuple вместо list (он неизменяемый) d[(1, 2, 3)] = "OK"
Ошибки с изменяемыми значениями по умолчанию
def add_item(lst=[]): # ❌ Опасный код!
lst.append(1)
return lst
print(add_item()) # [1]
print(add_item()) # [1, 1] ❌ Список не создаётся заново!
Используем
None вместо списка def add_item(lst=None):
if lst is None:
lst = []
lst.append(1)
return lst
copy() делает поверхностную копию (новый объект, но старые вложенные элементы). deepcopy() делает глубокую копию (всё новое). import copy
lst1 = [[1, 2, 3], [4, 5, 6]]
lst2 = copy.copy(lst1) # Поверхностная копия
lst2[0][0] = 99
print(lst1) # [[99, 2, 3], [4, 5, 6]] ❌ Исходный список изменился!
Используем
deepcopy() для полной независимой копии lst3 = copy.deepcopy(lst1)
lst3[0][0] = 100
print(lst1) # [[99, 2, 3], [4, 5, 6]] ✅ Не изменился!
Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4🔥2
Логарифмическая (O(log n)) быстрее линейной (O(n)). Например, при n = 1 000 000:
- log₂(n) ≈ 20,
- n = 1 000 000.
Логарифмическая сложность характерна для бинарного поиска, деления, дерева поиска.
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3💊2