You can now learn Data Science, FREE:
- Harvard
- Stanford
- MIT
- Google
- Microsoft
- IBM
10 Top Courses with Certificates* :
1. Python
- From Harvard
https://cs50.harvard.edu/python/
2. SQL
- From Stanford Online
https://online.stanford.edu/courses/soe-ydatabases0005-databases-relational-databases-and-sql
3. Excel
- From Microsoft Learn
https://learn.microsoft.com/training/paths/modern-analytics/
4. Power BI
- From Microsoft Learn
https://learn.microsoft.com/collections/m14nt4rdwnwp04
5. Data Visualization
- From Harvard
https://pll.harvard.edu/course/data-science-visualization
6. Data Analysis
- From IBM SkillsBuild
https://skillsbuild.org/adult-learners/explore-learning/data-analyst
7. Data Science using Python
- From Saylor Academy [Complete Course]
https://learn.saylor.org/course/view.php?id=504
8. Machine Learning
- From Google
https://developers.google.com/machine-learning/crash-course
9. Deep Learning
- From MIT
https://introtodeeplearning.com
10. Mathematics
- From MIT
https://ocw.mit.edu/search/?d=Mathematics&s=department_course_numbers.sort_coursenum
#علم_داده #Data_Science
🆔 @programmers_street
- Harvard
- Stanford
- MIT
- Microsoft
- IBM
10 Top Courses with Certificates* :
1. Python
- From Harvard
https://cs50.harvard.edu/python/
2. SQL
- From Stanford Online
https://online.stanford.edu/courses/soe-ydatabases0005-databases-relational-databases-and-sql
3. Excel
- From Microsoft Learn
https://learn.microsoft.com/training/paths/modern-analytics/
4. Power BI
- From Microsoft Learn
https://learn.microsoft.com/collections/m14nt4rdwnwp04
5. Data Visualization
- From Harvard
https://pll.harvard.edu/course/data-science-visualization
6. Data Analysis
- From IBM SkillsBuild
https://skillsbuild.org/adult-learners/explore-learning/data-analyst
7. Data Science using Python
- From Saylor Academy [Complete Course]
https://learn.saylor.org/course/view.php?id=504
8. Machine Learning
- From Google
https://developers.google.com/machine-learning/crash-course
9. Deep Learning
- From MIT
https://introtodeeplearning.com
10. Mathematics
- From MIT
https://ocw.mit.edu/search/?d=Mathematics&s=department_course_numbers.sort_coursenum
#علم_داده #Data_Science
🆔 @programmers_street
👍2
🔗 Basics of Machine Learning 👇👇
1. Supervised Learning: The algorithm is trained on a labeled datasets, learning to map input to output. For example, it can predict housing prices based on features like size and location.
2. Unsupervised Learning: The algorithm explores data patterns without explicit labels. Clustering is a common task, grouping similar data points. An example is customer segmentation for targeted marketing.
3. Reinforcement Learning: The algorithm learns by interacting with an environment. It receives feedback in the form of rewards or penalties, improving its actions over time. Gaming AI and robotic control are applications.
📖 Key concepts include:
- Features and Labels: Features are input variables, and labels are the desired output. The model learns to map features to labels during training.
- Training and Testing: The model is trained on a subset of data and then tested on unseen data to evaluate its performance.
- Overfitting and Underfitting: Overfitting occurs when a model is too complex and fits the training data too closely, performing poorly on new data. Underfitting happens when the model is too simple and fails to capture the underlying patterns.
- Algorithms: Different algorithms suit various tasks. Common ones include linear regression for predicting numerical values, and decision trees for classification tasks.
In summary, machine learning involves training models on data to make predictions or decisions. Supervised learning uses labeled data, unsupervised learning finds patterns in unlabeled data, and reinforcement learning learns through interaction with an environment. Key considerations include features, labels, overfitting, underfitting, and choosing the right algorithm for the task.
#یادگیری_ماشین #Machine_Learning
🆔 @programmers_street
Machine learning is a branch of artificial intelligence where computers learn from data to make decisions without explicit programming. There are three main types:
1. Supervised Learning: The algorithm is trained on a labeled datasets, learning to map input to output. For example, it can predict housing prices based on features like size and location.
2. Unsupervised Learning: The algorithm explores data patterns without explicit labels. Clustering is a common task, grouping similar data points. An example is customer segmentation for targeted marketing.
3. Reinforcement Learning: The algorithm learns by interacting with an environment. It receives feedback in the form of rewards or penalties, improving its actions over time. Gaming AI and robotic control are applications.
📖 Key concepts include:
- Features and Labels: Features are input variables, and labels are the desired output. The model learns to map features to labels during training.
- Training and Testing: The model is trained on a subset of data and then tested on unseen data to evaluate its performance.
- Overfitting and Underfitting: Overfitting occurs when a model is too complex and fits the training data too closely, performing poorly on new data. Underfitting happens when the model is too simple and fails to capture the underlying patterns.
- Algorithms: Different algorithms suit various tasks. Common ones include linear regression for predicting numerical values, and decision trees for classification tasks.
In summary, machine learning involves training models on data to make predictions or decisions. Supervised learning uses labeled data, unsupervised learning finds patterns in unlabeled data, and reinforcement learning learns through interaction with an environment. Key considerations include features, labels, overfitting, underfitting, and choosing the right algorithm for the task.
#یادگیری_ماشین #Machine_Learning
🆔 @programmers_street
👍2
Generative AI course for beginners
🔗 https://github.com/microsoft/generative-ai-for-beginners
#هوش_مصنوعی
🆔 @programmers_street
🔗 https://github.com/microsoft/generative-ai-for-beginners
#هوش_مصنوعی
🆔 @programmers_street
آموزش یادگیری ماشین در ۱۰۰ روز
این ریپو یه برنامه ی ۱۰۰ روزه برای تمرین کدنویسی و یادگیری ماشین به شما می ده
https://github.com/Avik-Jain/100-Days-Of-ML-Code
#یادگیری_ماشین #Machine_Learning
🆔 @programmers_street
این ریپو یه برنامه ی ۱۰۰ روزه برای تمرین کدنویسی و یادگیری ماشین به شما می ده
https://github.com/Avik-Jain/100-Days-Of-ML-Code
#یادگیری_ماشین #Machine_Learning
🆔 @programmers_street
GitHub
GitHub - Avik-Jain/100-Days-Of-ML-Code: 100 Days of ML Coding
100 Days of ML Coding. Contribute to Avik-Jain/100-Days-Of-ML-Code development by creating an account on GitHub.
سوالات مصاحبه های شغلی حوزه Machine Learning
https://github.com/khangich/machine-learning-interview
#interview #Machine_Learning
#یادگیری_ماشین #Machine_Learning
🆔 @programmers_street
https://github.com/khangich/machine-learning-interview
#interview #Machine_Learning
#یادگیری_ماشین #Machine_Learning
🆔 @programmers_street
GitHub
GitHub - khangich/machine-learning-interview: Machine Learning Interviews from FAANG, Snapchat, LinkedIn. I have offers from Snapchat…
Machine Learning Interviews from FAANG, Snapchat, LinkedIn. I have offers from Snapchat, Coupang, Stitchfix etc. Blog: mlengineer.io. - khangich/machine-learning-interview
❤1
اگه میخواهید به مبحث آمار و احتمال برای ورود به حوزه یادگیری ماشین مسلط شوید پیشنهاد میکنم از این پلی لیست استفاده کنید
https://www.youtube.com/playlist?list=PLBh2i93oe2qswFOC98oSFc37-0f4S3D4z
#یادگیری_ماشین #Machine_Learning
🆔 @programmers_street
https://www.youtube.com/playlist?list=PLBh2i93oe2qswFOC98oSFc37-0f4S3D4z
#یادگیری_ماشین #Machine_Learning
🆔 @programmers_street
❤3
معرفی دو پلی لیست خوب از MIT برای یادگیری جبر خطی
https://www.youtube.com/watch?v=7UJ4CFRGd-U&list=PL221E2BBF13BECF6C&index=1
https://www.youtube.com/playlist?list=PL49CF3715CB9EF31D
🆔 @programmers_street
https://www.youtube.com/watch?v=7UJ4CFRGd-U&list=PL221E2BBF13BECF6C&index=1
https://www.youtube.com/playlist?list=PL49CF3715CB9EF31D
🆔 @programmers_street
YouTube
An Interview with Gilbert Strang on Teaching Linear Algebra
MIT 18.06SC Linear Algebra, Fall 2011
Instructor: Gilbert Strang, Sarah Hansen
View the complete course: https://ocw.mit.edu/18-06SCF11
YouTube Playlist: https://www.youtube.com/playlist?list=PLUl4u3cNGP63uMA4q8GaU6Eg5nzeOc8tx
In this video, Professor Gilbert…
Instructor: Gilbert Strang, Sarah Hansen
View the complete course: https://ocw.mit.edu/18-06SCF11
YouTube Playlist: https://www.youtube.com/playlist?list=PLUl4u3cNGP63uMA4q8GaU6Eg5nzeOc8tx
In this video, Professor Gilbert…
👍1
یه پلی لیست خوب برا یادگیری Deep Learning
https://www.youtube.com/playlist?list=PLblh5JKOoLUIxGDQs4LFFD--41Vzf-ME1
#یادگیری_ماشین #Machine_Learning
🆔 @programmers_street
https://www.youtube.com/playlist?list=PLblh5JKOoLUIxGDQs4LFFD--41Vzf-ME1
#یادگیری_ماشین #Machine_Learning
🆔 @programmers_street
👍2
Linear Algebra was taught using Sheldon Axler's book for Mtech AI at IISc.
The book's author has made a course on Linear Algebra and released it for free!
https://www.youtube.com/playlist?list=PLGAnmvB9m7zOBVCZBUUmSinFV0wEir2Vw
#یادگیری_ماشین #Machine_Learning
🆔 @programmers_street
The book's author has made a course on Linear Algebra and released it for free!
https://www.youtube.com/playlist?list=PLGAnmvB9m7zOBVCZBUUmSinFV0wEir2Vw
#یادگیری_ماشین #Machine_Learning
🆔 @programmers_street
❤1
A nice resource by OpenAI to learn Deep Reinforcement Learning
https://github.com/openai/spinningup?tab=readme-ov-file
#یادگیری_ماشین #Machine_Learning
🆔 @programmers_street
https://github.com/openai/spinningup?tab=readme-ov-file
#یادگیری_ماشین #Machine_Learning
🆔 @programmers_street
Full Stack Deep Learning course for coders
https://www.youtube.com/playlist?list=PL1T8fO7ArWleMMI8KPJ_5D5XSlovTW_Ur
#یادگیری_ماشین #Machine_Learning
🆔 @programmers_street
https://www.youtube.com/playlist?list=PL1T8fO7ArWleMMI8KPJ_5D5XSlovTW_Ur
#یادگیری_ماشین #Machine_Learning
🆔 @programmers_street
👍1
This media is not supported in your browser
VIEW IN TELEGRAM
اگه دنبال تمرین و یادگیری مسائل ماشین لرنینگ هستید بخصوص برای مصاحبه و شغل این وبسایت جالبه! کلی سوال داره که از ساده تا سخت دسته بندی شده و میتونید تمرین کنید.
Link: https://www.deep-ml.com/
#یادگیری_ماشین #interview
معرفی منابع آموزشی یادگیری ماشین 👇👇
🆔 @programmers_street
Link: https://www.deep-ml.com/
#یادگیری_ماشین #interview
معرفی منابع آموزشی یادگیری ماشین 👇👇
🆔 @programmers_street
👍4
بهترین چنل های یوتیوب برای یادگیری پایتون در سال ۲۰۲۵
❯ Python
https://youtube.com/playlist?list=PL-osiE80TeTt2d9bfVyTiXJA-UTHn6WwU
❯ Django
https://youtube.com/playlist?list=PL4cUxeGkcC9iqfAag3a_BKEX1N43uJutw
❯ Flask
https://www.youtube.com/playlist?list=PL7yh-TELLS1EyAye_UMnlsTGKxg8uatkM
❯ FastAPI
https://www.youtube.com/playlist?list=PLK8U0kF0E_D6l19LhOGWhVZ3sQ6ujJKq_
❯ Numpy
https://www.youtube.com/playlist?list=PLCC34OHNcOtpalASMlX2HHdsLNipyyhbK
❯ Pandas
https://www.youtube.com/playlist?list=PLCC34OHNcOtqSz7Ke7kaYRf9CfviJgO55
❯ Scikit-Learn
https://www.youtube.com/playlist?list=PLcQVY5V2UY4LNmObS0gqNVyNdVfXnHwu8
#پایتون
🆔 @programmers_street
❯ Python
https://youtube.com/playlist?list=PL-osiE80TeTt2d9bfVyTiXJA-UTHn6WwU
❯ Django
https://youtube.com/playlist?list=PL4cUxeGkcC9iqfAag3a_BKEX1N43uJutw
❯ Flask
https://www.youtube.com/playlist?list=PL7yh-TELLS1EyAye_UMnlsTGKxg8uatkM
❯ FastAPI
https://www.youtube.com/playlist?list=PLK8U0kF0E_D6l19LhOGWhVZ3sQ6ujJKq_
❯ Numpy
https://www.youtube.com/playlist?list=PLCC34OHNcOtpalASMlX2HHdsLNipyyhbK
❯ Pandas
https://www.youtube.com/playlist?list=PLCC34OHNcOtqSz7Ke7kaYRf9CfviJgO55
❯ Scikit-Learn
https://www.youtube.com/playlist?list=PLcQVY5V2UY4LNmObS0gqNVyNdVfXnHwu8
#پایتون
🆔 @programmers_street
❤2👍1
دوره ی 5 روزه ی گوگل (رایگان) برای یادگیری GenAI برای developerها...
سرفصل هاش بسیار جالبه یه پروژه ی پایانی هم بهتون میدن که انجام بدین...
https://rsvp.withgoogle.com/events/google-generative-ai-intensive_2025q1
🆔 @programmers_street
سرفصل هاش بسیار جالبه یه پروژه ی پایانی هم بهتون میدن که انجام بدین...
https://rsvp.withgoogle.com/events/google-generative-ai-intensive_2025q1
🆔 @programmers_street
👍3
دوره آموزش بازی سازی موبایلی را امروز با قیمت باورنکردنی با ۹۵٪ تخفیف تهیه کنید
دوره برای ده نفر اول ۹۵ درصد تخفیف داره
بعد از اون تخفیف کم میشه
👇👇👇
zaya.io/jhwfo
با این دوره یه مهارت جالب و جذاب رو ياد بگیرید وبه بازار پرسود ساخت بازی برای موبایل وارد بشید
دوره برای ده نفر اول ۹۵ درصد تخفیف داره
بعد از اون تخفیف کم میشه
👇👇👇
zaya.io/jhwfo
با این دوره یه مهارت جالب و جذاب رو ياد بگیرید وبه بازار پرسود ساخت بازی برای موبایل وارد بشید
The Generative AI Learning Roadmap
Generative AI is a type of AI that can create new content based on what it has learned from existing knowledge. It has the potential to revolutionize human learning.
1- Learn about important concepts like Probability, Statistics, Calculus, and Linear Algebra.
2- Understand the working of foundational models like GPT, MetaAI’s Llama, Gemini, DeepSeek, and Claude.
3- Learn the GenAI development stack that includes Python, Language, ChatGPT APIs, Prompt Engineering, VectorDB, DeepSeek, Llama, and Huggingface.
4- Learn how to train and fine-tune a foundation model.
5- Understand the role of AI Agents and how to build one using GenAI tools.
6- Learn about GenAI models for computer vision such as GAN (Generative Adversarial Networks), MidJourney, DALL E, Flux, and so on.
7 - Make use of GenAI Learning Resources such as DeepLearning AI platform, Kaggle, Generative AI Insider’s Guide by ByteByteGo, Google Labs, and Nvidia Learning platforms.
🆔 @programmers_street
Generative AI is a type of AI that can create new content based on what it has learned from existing knowledge. It has the potential to revolutionize human learning.
1- Learn about important concepts like Probability, Statistics, Calculus, and Linear Algebra.
2- Understand the working of foundational models like GPT, MetaAI’s Llama, Gemini, DeepSeek, and Claude.
3- Learn the GenAI development stack that includes Python, Language, ChatGPT APIs, Prompt Engineering, VectorDB, DeepSeek, Llama, and Huggingface.
4- Learn how to train and fine-tune a foundation model.
5- Understand the role of AI Agents and how to build one using GenAI tools.
6- Learn about GenAI models for computer vision such as GAN (Generative Adversarial Networks), MidJourney, DALL E, Flux, and so on.
7 - Make use of GenAI Learning Resources such as DeepLearning AI platform, Kaggle, Generative AI Insider’s Guide by ByteByteGo, Google Labs, and Nvidia Learning platforms.
🆔 @programmers_street
👍4
❤4👍1