اگه میخواهید مبحث یادگیری عمیق با پایتون رو خوب یاد بگیرید پیشنهاد میکنم از این کتاب استفاده کنید
این لینک حاوی کتاب آموزشی و notebook های پایتونه که مربوط به کدهای داخل کتابه.
https://udlbook.github.io/udlbook
#یادگیری_ماشین #Machine_Learning
دانشکده مهندسی کامپیوتر 👇👇
🆔 @programmers_street
این لینک حاوی کتاب آموزشی و notebook های پایتونه که مربوط به کدهای داخل کتابه.
https://udlbook.github.io/udlbook
#یادگیری_ماشین #Machine_Learning
دانشکده مهندسی کامپیوتر 👇👇
🆔 @programmers_street
❤2
اگه دوست دارید یادبگیرید چطور agent های خودتون را درست کنید و دیپلوی کنید، کمپانی HuggingFace یک دوره رایگان گذاشته. این دوره از یادگیری مفاهیم اصلی شروع میشه و بعد کار با فریمورک های مختلف مثل langchain و llamaIndex و Smolagents را یاد میدن. و آخر هم که چندین مثال واقعی استفاده از agent ها را یاد میگیرید. به نظر میاد که certificate هم میدن (که البته به نظر من دادن یا ندادن اون اصلا مهم نیست!). یکی از بهترین دوره های کاربردی میتونه باشه!
تو این لینک برید و ثبت نام کنید.
Link: https://huggingface.us17.list-manage.com/subscribe?u=7f57e683fa28b51bfc493d048&id=9ed45a3ef6
#یادگیری_ماشین #Machine_Learning
دانشکده مهندسی کامپیوتر 👇👇
🆔 @programmers_street
تو این لینک برید و ثبت نام کنید.
Link: https://huggingface.us17.list-manage.com/subscribe?u=7f57e683fa28b51bfc493d048&id=9ed45a3ef6
#یادگیری_ماشین #Machine_Learning
دانشکده مهندسی کامپیوتر 👇👇
🆔 @programmers_street
❤4👍1
MIT Courses for Comp Sc & Machine Learning
❯ 6.042J - Mathematics for Computer Science
❯ 6.100L - Programming in Python
❯ 6.006 - Introduction to Algorithms
❯ 6.036 - Introduction to ML
❯ 6.S191 - Introduction to DL
❯ 6.034 - AI
❯ 6.5830 - DBMS
❯ 6.1810 - OS
❯ 14.15J - Networking
❯ 18.01 - Single Variable Calculus
❯ 18.02 - Multi Variable Calculus
❯ 18.05 - Introduction to Probability and Statistics
❯ 18.06 - Linear Algebra
❯ 6.092 - Programming in Java
❯ 6.S096 - C and C++
❯ 6.867 - Advanced ML
❯ 6.875 - Cryptography
❯ 6.045J - Automata Theory
❯ 6.046J - Design and Analysis of Algorithms
❯ 6.851 - Advanced Data Structures
❯ 6.852J - Distributed Algorithms
❯ 6.854J - Advanced Algorithms
❯ 18.657 - Mathematics of Machine Learning
❯ 18.S191 - Introduction to Computational Thinking
❯ 18.S096 - Matrix Calculus for ML
🔗Browse all free courses from here:
https://ocw.mit.edu/search/
#یادگیری_ماشین #Machine_Learning
دانشکده مهندسی کامپیوتر 👇👇
🆔 @programmers_street
❯ 6.042J - Mathematics for Computer Science
❯ 6.100L - Programming in Python
❯ 6.006 - Introduction to Algorithms
❯ 6.036 - Introduction to ML
❯ 6.S191 - Introduction to DL
❯ 6.034 - AI
❯ 6.5830 - DBMS
❯ 6.1810 - OS
❯ 14.15J - Networking
❯ 18.01 - Single Variable Calculus
❯ 18.02 - Multi Variable Calculus
❯ 18.05 - Introduction to Probability and Statistics
❯ 18.06 - Linear Algebra
❯ 6.092 - Programming in Java
❯ 6.S096 - C and C++
❯ 6.867 - Advanced ML
❯ 6.875 - Cryptography
❯ 6.045J - Automata Theory
❯ 6.046J - Design and Analysis of Algorithms
❯ 6.851 - Advanced Data Structures
❯ 6.852J - Distributed Algorithms
❯ 6.854J - Advanced Algorithms
❯ 18.657 - Mathematics of Machine Learning
❯ 18.S191 - Introduction to Computational Thinking
❯ 18.S096 - Matrix Calculus for ML
🔗Browse all free courses from here:
https://ocw.mit.edu/search/
#یادگیری_ماشین #Machine_Learning
دانشکده مهندسی کامپیوتر 👇👇
🆔 @programmers_street
۱۱۵۰ سوال مصاحبههای ماشین لرنینگ
https://mkareshk.github.io/ml-interview
#یادگیری_ماشین #Machine_Learning
#interview
🆔 @programmers_street
https://mkareshk.github.io/ml-interview
#یادگیری_ماشین #Machine_Learning
#interview
🆔 @programmers_street
یه pdf عالی برای یادگیری ماشین لرنینگ از Andrew Ng
“Machine Learning yearning”
An introductory FREE book about developing ML algorithms by Andrew Ng.
🔗https://home-wordpress.deeplearning.ai/wp-content/uploads/2022/03/andrew-ng-machine-learning-yearning.pdf
#یادگیری_ماشین #Machine_Learning
🆔 @programmers_street
“Machine Learning yearning”
An introductory FREE book about developing ML algorithms by Andrew Ng.
🔗https://home-wordpress.deeplearning.ai/wp-content/uploads/2022/03/andrew-ng-machine-learning-yearning.pdf
#یادگیری_ماشین #Machine_Learning
🆔 @programmers_street
❤6👍1
Stanford’s CS229 - Machine Learning
A complete lecture notes by Andrew Ng (227 pages).
https://cs229.stanford.edu/main_notes.pdf
#یادگیری_ماشین #Machine_Learning
🆔 @programmers_street
A complete lecture notes by Andrew Ng (227 pages).
https://cs229.stanford.edu/main_notes.pdf
#یادگیری_ماشین #Machine_Learning
🆔 @programmers_street
👍2
🔗 Basics of Machine Learning 👇👇
1. Supervised Learning: The algorithm is trained on a labeled datasets, learning to map input to output. For example, it can predict housing prices based on features like size and location.
2. Unsupervised Learning: The algorithm explores data patterns without explicit labels. Clustering is a common task, grouping similar data points. An example is customer segmentation for targeted marketing.
3. Reinforcement Learning: The algorithm learns by interacting with an environment. It receives feedback in the form of rewards or penalties, improving its actions over time. Gaming AI and robotic control are applications.
📖 Key concepts include:
- Features and Labels: Features are input variables, and labels are the desired output. The model learns to map features to labels during training.
- Training and Testing: The model is trained on a subset of data and then tested on unseen data to evaluate its performance.
- Overfitting and Underfitting: Overfitting occurs when a model is too complex and fits the training data too closely, performing poorly on new data. Underfitting happens when the model is too simple and fails to capture the underlying patterns.
- Algorithms: Different algorithms suit various tasks. Common ones include linear regression for predicting numerical values, and decision trees for classification tasks.
In summary, machine learning involves training models on data to make predictions or decisions. Supervised learning uses labeled data, unsupervised learning finds patterns in unlabeled data, and reinforcement learning learns through interaction with an environment. Key considerations include features, labels, overfitting, underfitting, and choosing the right algorithm for the task.
#یادگیری_ماشین #Machine_Learning
🆔 @programmers_street
Machine learning is a branch of artificial intelligence where computers learn from data to make decisions without explicit programming. There are three main types:
1. Supervised Learning: The algorithm is trained on a labeled datasets, learning to map input to output. For example, it can predict housing prices based on features like size and location.
2. Unsupervised Learning: The algorithm explores data patterns without explicit labels. Clustering is a common task, grouping similar data points. An example is customer segmentation for targeted marketing.
3. Reinforcement Learning: The algorithm learns by interacting with an environment. It receives feedback in the form of rewards or penalties, improving its actions over time. Gaming AI and robotic control are applications.
📖 Key concepts include:
- Features and Labels: Features are input variables, and labels are the desired output. The model learns to map features to labels during training.
- Training and Testing: The model is trained on a subset of data and then tested on unseen data to evaluate its performance.
- Overfitting and Underfitting: Overfitting occurs when a model is too complex and fits the training data too closely, performing poorly on new data. Underfitting happens when the model is too simple and fails to capture the underlying patterns.
- Algorithms: Different algorithms suit various tasks. Common ones include linear regression for predicting numerical values, and decision trees for classification tasks.
In summary, machine learning involves training models on data to make predictions or decisions. Supervised learning uses labeled data, unsupervised learning finds patterns in unlabeled data, and reinforcement learning learns through interaction with an environment. Key considerations include features, labels, overfitting, underfitting, and choosing the right algorithm for the task.
#یادگیری_ماشین #Machine_Learning
🆔 @programmers_street
👍2
آموزش یادگیری ماشین در ۱۰۰ روز
این ریپو یه برنامه ی ۱۰۰ روزه برای تمرین کدنویسی و یادگیری ماشین به شما می ده
https://github.com/Avik-Jain/100-Days-Of-ML-Code
#یادگیری_ماشین #Machine_Learning
🆔 @programmers_street
این ریپو یه برنامه ی ۱۰۰ روزه برای تمرین کدنویسی و یادگیری ماشین به شما می ده
https://github.com/Avik-Jain/100-Days-Of-ML-Code
#یادگیری_ماشین #Machine_Learning
🆔 @programmers_street
GitHub
GitHub - Avik-Jain/100-Days-Of-ML-Code: 100 Days of ML Coding
100 Days of ML Coding. Contribute to Avik-Jain/100-Days-Of-ML-Code development by creating an account on GitHub.
سوالات مصاحبه های شغلی حوزه Machine Learning
https://github.com/khangich/machine-learning-interview
#interview #Machine_Learning
#یادگیری_ماشین #Machine_Learning
🆔 @programmers_street
https://github.com/khangich/machine-learning-interview
#interview #Machine_Learning
#یادگیری_ماشین #Machine_Learning
🆔 @programmers_street
GitHub
GitHub - khangich/machine-learning-interview: Machine Learning Interviews from FAANG, Snapchat, LinkedIn. I have offers from Snapchat…
Machine Learning Interviews from FAANG, Snapchat, LinkedIn. I have offers from Snapchat, Coupang, Stitchfix etc. Blog: mlengineer.io. - khangich/machine-learning-interview
❤1
اگه میخواهید به مبحث آمار و احتمال برای ورود به حوزه یادگیری ماشین مسلط شوید پیشنهاد میکنم از این پلی لیست استفاده کنید
https://www.youtube.com/playlist?list=PLBh2i93oe2qswFOC98oSFc37-0f4S3D4z
#یادگیری_ماشین #Machine_Learning
🆔 @programmers_street
https://www.youtube.com/playlist?list=PLBh2i93oe2qswFOC98oSFc37-0f4S3D4z
#یادگیری_ماشین #Machine_Learning
🆔 @programmers_street
❤3