Простыми словами: Что такое абстракция в ООП
Про наследование мы уже рассказали. Теперь поговорим про абстракцию.
Абстракция — это концепция, которая помогает скрыть сложные внутренние детали и выделить только ключевые аспекты объекта. Это как использование бытового прибора: вы знаете, какие кнопки нажимать, но не обязаны понимать, как он работает изнутри.
Зачем нужна абстракция?
1. Упрощение взаимодействия: Абстракция упрощает использование сложных систем, предоставляя понятные и удобные интерфейсы.
2. Сокрытие деталей реализации: Позволяет скрывать детали, которые не важны для пользователя объекта.
3. Повторное использование кода: Обеспечивает создание общих интерфейсов, которые могут быть использованы в различных контекстах.
Пример 1: Абстрактные классы
В некоторых языках программирования, таких как Python, Java или C#, существуют абстрактные классы. Они содержат методы, которые должны быть реализованы в дочерних классах.
Здесь
Пример 2: Интерфейсы (в других языках)
В языках программирования, таких как Java или C#, существуют интерфейсы, которые определяют набор методов, которые должны быть реализованы классами.
Здесь
Давайте теперь посмотрим, где применяется эта концепция в реальной жизни:
1. Управление пользователями. Абстракция позволяет создавать общие интерфейсы для работы с пользователями различных типов — например, администраторы и обычные пользователи.
2. Работа с данными. Часто используется, когда нужно создать общий интерфейс для работы с разными источниками данных.
3. Системы оплаты. Можно создать абстракцию для различной обработки платежей — кредитными картами, PayPal, Bitcoin и т.д.
#простымисловами #ооп
Про наследование мы уже рассказали. Теперь поговорим про абстракцию.
Абстракция — это концепция, которая помогает скрыть сложные внутренние детали и выделить только ключевые аспекты объекта. Это как использование бытового прибора: вы знаете, какие кнопки нажимать, но не обязаны понимать, как он работает изнутри.
Зачем нужна абстракция?
1. Упрощение взаимодействия: Абстракция упрощает использование сложных систем, предоставляя понятные и удобные интерфейсы.
2. Сокрытие деталей реализации: Позволяет скрывать детали, которые не важны для пользователя объекта.
3. Повторное использование кода: Обеспечивает создание общих интерфейсов, которые могут быть использованы в различных контекстах.
Пример 1: Абстрактные классы
В некоторых языках программирования, таких как Python, Java или C#, существуют абстрактные классы. Они содержат методы, которые должны быть реализованы в дочерних классах.
from abc import ABC, abstractmethod
class Животное(ABC):
@abstractmethod
def издать_звук(self):
pass
class Кот(Животное):
def издать_звук(self):
print("Мяу!")
class Собака(Животное):
def издать_звук(self):
print("Гав!")
животные = [Кот(), Собака()]
for животное in животные:
животное.издать_звук()
Здесь
Животное
— это абстрактный класс с абстрактным методом издать_звук
, который обязаны реализовать все дочерние классы, такие как Кот
и Собака
.Пример 2: Интерфейсы (в других языках)
В языках программирования, таких как Java или C#, существуют интерфейсы, которые определяют набор методов, которые должны быть реализованы классами.
interface Животное {
void издатьЗвук();
}
class Кот implements Животное {
public void издатьЗвук() {
System.out.println("Мяу!");
}
}
class Собака implements Животное {
public void издатьЗвук() {
System.out.println("Гав!");
}
}
public class Main {
public static void main(String[] args) {
Животное кот = new Кот();
Животное собака = new Собака();
кот.издатьЗвук(); // Output: Мяу!
собака.издатьЗвук(); // Output: Гав!
}
}
Здесь
Животное
— это интерфейс, который определяется методом издатьЗвук
, что должен быть реализован в классах Кот
и Собака
.Давайте теперь посмотрим, где применяется эта концепция в реальной жизни:
1. Управление пользователями. Абстракция позволяет создавать общие интерфейсы для работы с пользователями различных типов — например, администраторы и обычные пользователи.
from abc import ABC, abstractmethod
class Пользователь(ABC):
@abstractmethod
def доступ(self):
pass
class Админ(Пользователь):
def доступ(self):
return "Полный доступ"
class Гость(Пользователь):
def доступ(self):
return "Доступ в режиме чтения"
пользователи = [Админ(), Гость()]
for пользователь in пользователи:
print(пользователь.доступ())
2. Работа с данными. Часто используется, когда нужно создать общий интерфейс для работы с разными источниками данных.
from abc import ABC, abstractmethod
class Репозиторий(ABC):
@abstractmethod
def получить_данные(self):
pass
class SQLРепозиторий(Репозиторий):
def получить_данные(self):
return "Данные из SQL базы данных"
class APIРепозиторий(Репозиторий):
def получить_данные(self):
return "Данные из API"
репозитории = [SQLРепозиторий(), APIРепозиторий()]
for репозиторий in репозитории:
print(репозиторий.получить_данные())
3. Системы оплаты. Можно создать абстракцию для различной обработки платежей — кредитными картами, PayPal, Bitcoin и т.д.
class Платеж(ABC):
@abstractmethod
def провести_платеж(self, сумма):
pass
class КредитнаяКарта(Платеж):
def провести_платеж(self, сумма):
print(f"Платеж проведён на сумму {сумма} с кредитной карты")
class PayPal(Платеж):
def провести_платеж(self, сумма):
print(f"Платеж проведён на сумму {сумма} через PayPal")
платежи = [КредитнаяКарта(), PayPal()]
for платеж in платежи:
платеж.провести_платеж(100)
#простымисловами #ооп
Простыми словами: Инкапсуляция в ООП
Мы с вами уже разобрали наследование и абстракцию. Пришло время третьей парадигмы. Инкапсуляция — это концепция ООП, которая скрывает внутренние детали объекта и предоставляет доступ только к нужным методам и свойствам. Это как капсула с лекарством: вы знаете, как её использовать, но не видите, что внутри.
Абстракция и инкапсуляция часто работают вместе. Абстракция скрывает сложные детали, выделяя только ключевые аспекты, а инкапсуляция обеспечивает безопасность этих деталей, предоставляя контролируемый доступ. Эти концепции делают ваш код более безопасным, структурированным и лёгким для поддержки.
Давайте рассмотрим несколько примеров:
В Python инкапсуляции часто достигают с помощью именования методов и атрибутов с одним или двумя подчёркиваниями.
В этом примере атрибут
Давайте рассмотрим пример из Java. Здесь инкапсуляция достигается с помощью модификаторов доступа (private, protected, public) и методов getter/setter.
В этом примере атрибут
Где применяется?
Инкапсуляция помогает скрыть детали внутренней структуры объекта, например, банковского счёта.
Также позволяет управлять доступом к критическим операциям.
Теперь вы знакомы с тремя составляющими ООП. Нам осталось разобраться в полиморфизме.
Если формат заходит — поставьте ❤️, я буду знать, что пишу не зря. А замечания можете написать в комментарии👇
#простымисловами #ооп #инкапсуляция
Мы с вами уже разобрали наследование и абстракцию. Пришло время третьей парадигмы. Инкапсуляция — это концепция ООП, которая скрывает внутренние детали объекта и предоставляет доступ только к нужным методам и свойствам. Это как капсула с лекарством: вы знаете, как её использовать, но не видите, что внутри.
Абстракция и инкапсуляция часто работают вместе. Абстракция скрывает сложные детали, выделяя только ключевые аспекты, а инкапсуляция обеспечивает безопасность этих деталей, предоставляя контролируемый доступ. Эти концепции делают ваш код более безопасным, структурированным и лёгким для поддержки.
Давайте рассмотрим несколько примеров:
В Python инкапсуляции часто достигают с помощью именования методов и атрибутов с одним или двумя подчёркиваниями.
class Кот:
def __init__(self, имя):
self.__имя = имя # Скрытый атрибут
def получить_имя(self):
return self.__имя # Метод для получения скрытого атрибута
def мяукать(self):
print(f"{self.__имя} говорит: Мяу!")
кот = Кот("Мурзик")
print(кот.получить_имя()) # Output: Мурзик
кот.мяукать() # Output: Мурзик говорит: Мяу!
# Попытка доступа к скрытому атрибуту напрямую
# print(кот.__имя) # Это вызовет ошибку
В этом примере атрибут
__имя
скрыт от внешнего доступа, и доступ к нему можно получить только через метод получить_имя
.Давайте рассмотрим пример из Java. Здесь инкапсуляция достигается с помощью модификаторов доступа (private, protected, public) и методов getter/setter.
public class Кот {
private String имя; // Скрытый атрибут
public Кот(String имя) {
this.имя = имя;
}
public String getИмя() { // Метод для получения скрытого атрибута
return имя;
}
public void мяукать() {
System.out.println(имя + " говорит: Мяу!");
}
public static void main(String[] args) {
Кот кот = new Кот("Мурзик");
System.out.println(кот.getИмя()); // Output: Мурзик
кот.мяукать(); // Output: Мурзик говорит: Мяу!
// Попытка доступа к скрытому атрибуту напрямую
// System.out.println(кот.имя); // Это вызовет ошибку
}
}
В этом примере атрибут
имя
объявлен как private
и доступен только через метод getИмя
.Где применяется?
Инкапсуляция помогает скрыть детали внутренней структуры объекта, например, банковского счёта.
class БанкСчет:
def __init__(self, баланс=0):
self.__баланс = баланс # Скрытый атрибут
def пополнить(self, сумма):
if сумма > 0:
self.__баланс += сумма
def вывести(self, сумма):
if сумма > 0 и self.__баланс >= сумма:
self.__баланс -= сумма
def получить_баланс(self):
return self.__баланс
счет = БанкСчет()
счет.пополнить(100)
счет.вывести(30)
print(счет.получить_баланс()) # Output: 70
Также позволяет управлять доступом к критическим операциям.
class Пользователь:
def __init__(self, имя, пароль):
self.__имя = имя
self.__пароль = пароль # Скрытый атрибут
def проверить_пароль(self, ввод):
return self.__пароль == ввод
пользователь = Пользователь("Иван", "12345")
print(пользователь.проверить_пароль("12345")) # Output: True
print(пользователь.проверить_пароль("54321")) # Output: False
Теперь вы знакомы с тремя составляющими ООП. Нам осталось разобраться в полиморфизме.
Если формат заходит — поставьте ❤️, я буду знать, что пишу не зря. А замечания можете написать в комментарии👇
#простымисловами #ооп #инкапсуляция
Простыми словами: Полиморфизм в ООП
Вот мы и добрались до заключительной парадигмы в ООП. Напомню, что наследование, абстракцию и инкапсуляцию можно прочитать выше или по тегу #простымисловами
Давайте же разберём подробно концепцию полиморфизма в объектно-ориентированном программировании (ООП) с примерами кода.
Полиморфизм — это концепция ООП, позволяющая использовать один и тот же интерфейс для разных типов объектов. Он позволяет объектам разных классов обрабатывать вызовы методов с одинаковыми именами, предоставляя каждым свой уникальный подход к реализации.
Зачем нужен полиморфизм?
1. Унификация интерфейсов позволяет использовать один интерфейс для взаимодействия с различными типами объектов.
2. Гибкость и расширяемость упрощает добавление нового функционала, так как новые классы могут использовать существующие интерфейсы.
3. Упрощение кода позволяет писать более общий и универсальный код.
Как это выглядит в коде?
В Python полиморфизм часто достигается через методические перегрузки и наследование:
В этом примере метод
В Java полиморфизм достигается через интерфейсы и абстрактные классы:
Здесь абстрактный метод
Давайте теперь посмотрим примеры кейсов, где может быть актуален полиморфизм:
1. Фигуры
Предположим, у нас есть несколько различных фигур, и мы хотим рассчитать их площадь. Полиморфизм позволяет нам использовать один интерфейс для разных типов фигур.
2. Платежные системы
Используем полиморфизм для различных способов проведения платежей.
Полиморфизм — ключевая концепция ООП. Он делает ваш код более универсальным и удобным для использования и расширения. Это особенно полезно, когда ваш проект растёт и требует поддержки различных типов объектов.
#простымисловами #ооп #полиморфизм
Вот мы и добрались до заключительной парадигмы в ООП. Напомню, что наследование, абстракцию и инкапсуляцию можно прочитать выше или по тегу #простымисловами
Давайте же разберём подробно концепцию полиморфизма в объектно-ориентированном программировании (ООП) с примерами кода.
Полиморфизм — это концепция ООП, позволяющая использовать один и тот же интерфейс для разных типов объектов. Он позволяет объектам разных классов обрабатывать вызовы методов с одинаковыми именами, предоставляя каждым свой уникальный подход к реализации.
Зачем нужен полиморфизм?
1. Унификация интерфейсов позволяет использовать один интерфейс для взаимодействия с различными типами объектов.
2. Гибкость и расширяемость упрощает добавление нового функционала, так как новые классы могут использовать существующие интерфейсы.
3. Упрощение кода позволяет писать более общий и универсальный код.
Как это выглядит в коде?
В Python полиморфизм часто достигается через методические перегрузки и наследование:
class Животное:
def издать_звук(self):
raise NotImplementedError("Этот метод должен быть реализован в подклассе")
class Кот(Животное):
def издать_звук(self):
print("Мяу!")
class Собака(Животное):
def издать_звук(self):
print("Гав!")
животные = [Кот(), Собака()]
for животное in животные:
животное.издать_звук() # Output: Мяу! Гав!
В этом примере метод
издать_звук
вызывается для объектов различных классов (Кот
и Собака
), и каждый объект реализует этот метод по-своему.В Java полиморфизм достигается через интерфейсы и абстрактные классы:
abstract class Животное {
abstract void издатьЗвук();
}
class Кот extends Животное {
@Override
void издатьЗвук() {
System.out.println("Мяу!");
}
}
class Собака extends Животное {
@Override
void издатьЗвук() {
System.out.println("Гав!");
}
}
public class Main {
public static void main(String[] args) {
Животное[] животные = { new Кот(), new Собака() };
for (Животное животное : животные) {
животное.издатьЗвук(); // Output: Мяу! Гав!
}
}
}
Здесь абстрактный метод
издатьЗвук
реализуется в классах Кот
и Собака
, и тот же метод вызывает различные реализации в зависимости от объекта.Давайте теперь посмотрим примеры кейсов, где может быть актуален полиморфизм:
1. Фигуры
Предположим, у нас есть несколько различных фигур, и мы хотим рассчитать их площадь. Полиморфизм позволяет нам использовать один интерфейс для разных типов фигур.
class Фигура:
def площадь(self):
raise NotImplementedError("Этот метод должен быть реализован в подклассе")
class Круг(Фигура):
def __init__(self, радиус):
self.радиус = радиус
def площадь(self):
return 3.14159 * self.радиус ** 2
class Прямоугольник(Фигура):
def __init__(self, ширина, высота):
self.ширина = ширина
self.высота = высота
def площадь(self):
return self.ширина * self.высота
фигуры = [Круг(5), Прямоугольник(3, 4)]
for фигура in фигуры:
print(f"Площадь: {фигура.площадь()}")
2. Платежные системы
Используем полиморфизм для различных способов проведения платежей.
class Платеж(ABC):
@abstractmethod
def провести_платеж(self, сумма):
pass
class КредитнаяКарта(Платеж):
def провести_платеж(self, сумма):
print(f"Платеж проведён на сумму {сумма} с кредитной карты")
class PayPal(Платеж):
def провести_платеж(self, сумма):
print(f"Платеж проведён на сумму {сумма} через PayPal")
платежи = [КредитнаяКарта(), PayPal()]
for платеж in платежи:
платеж.провести_платеж(100)
Полиморфизм — ключевая концепция ООП. Он делает ваш код более универсальным и удобным для использования и расширения. Это особенно полезно, когда ваш проект растёт и требует поддержки различных типов объектов.
#простымисловами #ооп #полиморфизм
Простыми словами: Зерокодинг
Многие хотят в IT, но не всех привлекает написание кода. Таким людям можно попробовать себя в зерокодинге.
Зерокодинг — это метод создания IT-решений без написания кода. Представьте себе, что вы собираете из конструктора дома модели, используя готовые блоки. Так и здесь: программисты используют платформы и инструменты, которые позволяют создавать сайты, приложения и автоматизировать бизнес-процессы, не погружаясь в детали программирования.
Основное отличие зерокодинга от обычного программирования в том, что вам не нужно писать код вручную. Вместо этого используются визуальные редакторы и конструкторы, где вы собираете компоненты, задавая функции и связи между ними. Это ускоряет процесс разработки и упрощает создание стандартных решений.
Сегодня профессии, связанные с зерокодингом, становятся всё более популярными. Зерокодеры работают с различными платформами: создают сайты на Tilda и Webflow, сборки опросов на Typeform, и даже приложения на Glide или Adalo. Их задача — понять, какие задачи нужно решить, и выбрать подходящий инструмент для этого.
Давайте немного поговорим о том, сколько такие специалисты могут зарабатывать.
Доход зерокодеров в России может варьироваться в зависимости от их навыков и опыта. В среднем, как показывает практика, начинающие могут зарабатывать от 50 000 до 80 000 рублей в месяц. Более опытные специалисты, которые могут интегрировать сложные составляющие и автоматизировать бизнес-процессы, могут получать от 100 000 рублей и выше.
Разумеется зерокодинг имеет свои плюсы и минусы, поэтому стоит учитывать их, если решите попробовать себя в этом направлении.
Плюсы:
— скорость разработки. Можно создать работающий продукт за считанные часы или дни;
— доступность. Не нужно иметь глубокие знания в программировании, подойдёт начинающим;
— экономия ресурсов. Дешевле, чем разработка с нуля с вовлечением команды программистов;
— тестирование гипотез. Удобно для быстрого прототипирования и проверки идей.
Минусы:
— ограниченная гибкость. Возможности платформ ограничены их функциями и шаблонами;
— сложности с масштабированием. Большие и сложные проекты могут потребовать перехода на полноценное программирование;
— зависимость от платформы. Если платформа изменяет условия или прекращает работу, можно потерять проект или данные.
Зерокодинг отлично подходит для малого и среднего бизнеса, стартапов, а также для тех, кто хочет заняться разработкой IT-решений быстро и без больших затрат. Однако для крупных и уникальных проектов, как правило, всё же требуется классическое программирование.
А вы хотели бы попробовать себя в этом?
🗿 — только код, только хардкор
❤️ — выглядит интересно и не так сложно, как обычное программирование. Я бы попробовал
🤔 — а можно просто денег и не работать?
#простымисловами #зерокодинг
Многие хотят в IT, но не всех привлекает написание кода. Таким людям можно попробовать себя в зерокодинге.
Зерокодинг — это метод создания IT-решений без написания кода. Представьте себе, что вы собираете из конструктора дома модели, используя готовые блоки. Так и здесь: программисты используют платформы и инструменты, которые позволяют создавать сайты, приложения и автоматизировать бизнес-процессы, не погружаясь в детали программирования.
Основное отличие зерокодинга от обычного программирования в том, что вам не нужно писать код вручную. Вместо этого используются визуальные редакторы и конструкторы, где вы собираете компоненты, задавая функции и связи между ними. Это ускоряет процесс разработки и упрощает создание стандартных решений.
Сегодня профессии, связанные с зерокодингом, становятся всё более популярными. Зерокодеры работают с различными платформами: создают сайты на Tilda и Webflow, сборки опросов на Typeform, и даже приложения на Glide или Adalo. Их задача — понять, какие задачи нужно решить, и выбрать подходящий инструмент для этого.
Давайте немного поговорим о том, сколько такие специалисты могут зарабатывать.
Доход зерокодеров в России может варьироваться в зависимости от их навыков и опыта. В среднем, как показывает практика, начинающие могут зарабатывать от 50 000 до 80 000 рублей в месяц. Более опытные специалисты, которые могут интегрировать сложные составляющие и автоматизировать бизнес-процессы, могут получать от 100 000 рублей и выше.
Разумеется зерокодинг имеет свои плюсы и минусы, поэтому стоит учитывать их, если решите попробовать себя в этом направлении.
Плюсы:
— скорость разработки. Можно создать работающий продукт за считанные часы или дни;
— доступность. Не нужно иметь глубокие знания в программировании, подойдёт начинающим;
— экономия ресурсов. Дешевле, чем разработка с нуля с вовлечением команды программистов;
— тестирование гипотез. Удобно для быстрого прототипирования и проверки идей.
Минусы:
— ограниченная гибкость. Возможности платформ ограничены их функциями и шаблонами;
— сложности с масштабированием. Большие и сложные проекты могут потребовать перехода на полноценное программирование;
— зависимость от платформы. Если платформа изменяет условия или прекращает работу, можно потерять проект или данные.
Зерокодинг отлично подходит для малого и среднего бизнеса, стартапов, а также для тех, кто хочет заняться разработкой IT-решений быстро и без больших затрат. Однако для крупных и уникальных проектов, как правило, всё же требуется классическое программирование.
А вы хотели бы попробовать себя в этом?
🗿 — только код, только хардкор
❤️ — выглядит интересно и не так сложно, как обычное программирование. Я бы попробовал
🤔 — а можно просто денег и не работать?
#простымисловами #зерокодинг
Простыми словами: Какие стили программирования существуют
Кроме объектно-ориентированного программирования (ООП), существует несколько других видов программирования, каждое из которых применяется в различных областях и имеет свои особенности.
1. Процедурное программирование
Используется для решения задач, разбиваемых на последовательности шагов или процедур. C, Pascal, и даже большинство языков высокого уровня поддерживают процедурное программирование.
Плюсы:
— простота и понятность, особенно для небольших программ;
— широкая база знаний и большое количество примеров.
Минусы:
— сложность управления большими проектами;
— меньшая гибкость и повторное использование кода по сравнению с ООП.
Такой стиль можно встретить в системном программировании, встраиваемых системах и приложениях с простой структурой.
2. Функциональное программирование
Оно используется для работы с вычислениями, которые можно описать как набор математических функций. В таком стиле часто пишут на Haskell, Lisp, Erlang, Scala, и даже JavaScript.
Плюсы:
— выраженная математическая чистота и вероятностное отсутствие побочных эффектов;
— лёгкость тестирования и отладки.
Минусы:
— меньшая распространённость и сложность освоения для новичков;
— ограниченность инструментов и библиотек в сравнении с ООП.
Применяется в научных вычислениях, обработке данных, параллельных и асинхронных задачах.
3. Логическое программирование
Используется для задач, которые можно описать логическими выражениями и правилами. Используется в языке Prolog.
Плюсы:
— способность выразить сложные логические задачи и поиск решений на высоком уровне абстракции;
— полезность в областях, требующих анализа данных и логических заключений.
Минусы:
— сложность понимания и отладки;
— ограниченные области практического применения.
Такой стиль можно встретить при программировании искусственного интеллекта, а также при автоматическом доказательстве теорем.
4. Декларативное программирование
Используется для описания желаемого результата, а не шага к его достижению. Используется в SQL (для запросов к базам данных), HTML (для веб-разметки), XSLT (для трансформации XML).
Плюсы:
— ясность и простота синтаксиса;
— фокус на описании задачи, а не способе её решения.
Минусы:
— ограниченность в универсальности решения задач;
— зависимость от конкретных исполнительных сред.
Применение: Встроенные системы управления данными, веб-разработка, трансформация данных.
5. Мультипарадигменное программирование
Этот стиль предполагает объединение нескольких парадигм программирования (например, ООП и функционального программирования) в одном языке или приложении. Может быть реализовано на многих языках, включая Python, JavaScript, Kotlin, Scala, Swift и т.д.
Плюсы:
— гибкость и способность адаптироваться к различным задачам;
— возможность использовать лучшие стороны разных парадигм.
Минусы:
— потенциальная сложность освоения всего спектра возможностей языка;
— возможность несогласованных паттернов кода.
Используется в ниверсальных языках программирования, больших проектах, требующие разных подходов.
Какая парадигма сейчас более популярна?
Сегодня сложилось так, что объектно-ориентированное программирование остаётся одной из самых популярных парадигм, особенно в разработке крупных и сложных систем. Однако функциональное программирование набирает обороты, особенно в области обработки данных и параллельных вычислений. Мультипарадигменные языки, такие как Python и JavaScript, также стали очень популярны благодаря своей гибкости и широким возможностям.
Каждая парадигма имеет свои сильные и слабые стороны и находит свое применение в различных областях. Выбор подходящей парадигмы зависит от конкретной задачи и требований проекта.
🤯 — не знал, что их так много
🤔 — а можно теперь подробнее про каждую?
❤️ — зачем что-то придумывать, если есть ООП?
#простымисловами
Кроме объектно-ориентированного программирования (ООП), существует несколько других видов программирования, каждое из которых применяется в различных областях и имеет свои особенности.
1. Процедурное программирование
Используется для решения задач, разбиваемых на последовательности шагов или процедур. C, Pascal, и даже большинство языков высокого уровня поддерживают процедурное программирование.
Плюсы:
— простота и понятность, особенно для небольших программ;
— широкая база знаний и большое количество примеров.
Минусы:
— сложность управления большими проектами;
— меньшая гибкость и повторное использование кода по сравнению с ООП.
Такой стиль можно встретить в системном программировании, встраиваемых системах и приложениях с простой структурой.
2. Функциональное программирование
Оно используется для работы с вычислениями, которые можно описать как набор математических функций. В таком стиле часто пишут на Haskell, Lisp, Erlang, Scala, и даже JavaScript.
Плюсы:
— выраженная математическая чистота и вероятностное отсутствие побочных эффектов;
— лёгкость тестирования и отладки.
Минусы:
— меньшая распространённость и сложность освоения для новичков;
— ограниченность инструментов и библиотек в сравнении с ООП.
Применяется в научных вычислениях, обработке данных, параллельных и асинхронных задачах.
3. Логическое программирование
Используется для задач, которые можно описать логическими выражениями и правилами. Используется в языке Prolog.
Плюсы:
— способность выразить сложные логические задачи и поиск решений на высоком уровне абстракции;
— полезность в областях, требующих анализа данных и логических заключений.
Минусы:
— сложность понимания и отладки;
— ограниченные области практического применения.
Такой стиль можно встретить при программировании искусственного интеллекта, а также при автоматическом доказательстве теорем.
4. Декларативное программирование
Используется для описания желаемого результата, а не шага к его достижению. Используется в SQL (для запросов к базам данных), HTML (для веб-разметки), XSLT (для трансформации XML).
Плюсы:
— ясность и простота синтаксиса;
— фокус на описании задачи, а не способе её решения.
Минусы:
— ограниченность в универсальности решения задач;
— зависимость от конкретных исполнительных сред.
Применение: Встроенные системы управления данными, веб-разработка, трансформация данных.
5. Мультипарадигменное программирование
Этот стиль предполагает объединение нескольких парадигм программирования (например, ООП и функционального программирования) в одном языке или приложении. Может быть реализовано на многих языках, включая Python, JavaScript, Kotlin, Scala, Swift и т.д.
Плюсы:
— гибкость и способность адаптироваться к различным задачам;
— возможность использовать лучшие стороны разных парадигм.
Минусы:
— потенциальная сложность освоения всего спектра возможностей языка;
— возможность несогласованных паттернов кода.
Используется в ниверсальных языках программирования, больших проектах, требующие разных подходов.
Какая парадигма сейчас более популярна?
Сегодня сложилось так, что объектно-ориентированное программирование остаётся одной из самых популярных парадигм, особенно в разработке крупных и сложных систем. Однако функциональное программирование набирает обороты, особенно в области обработки данных и параллельных вычислений. Мультипарадигменные языки, такие как Python и JavaScript, также стали очень популярны благодаря своей гибкости и широким возможностям.
Каждая парадигма имеет свои сильные и слабые стороны и находит свое применение в различных областях. Выбор подходящей парадигмы зависит от конкретной задачи и требований проекта.
🤯 — не знал, что их так много
🤔 — а можно теперь подробнее про каждую?
❤️ — зачем что-то придумывать, если есть ООП?
#простымисловами
Простыми словами: Процедурное программирование
В прошлом посте рубрики я вкратце рассказал про разные парадигмы программирования. Пришло время углубится в одну из них
Процедурное программирование остаётся важной парадигмой, особенно в областях, где требуется высокая производительность и прямой контроль над вычислениями. Несмотря на свои ограничения в моделировании больших и сложных систем, оно продолжает играть ключевую роль в разработке софта, требующего простоты и эффективности.
#простымисловами #парадигмыпрограммирования
В прошлом посте рубрики я вкратце рассказал про разные парадигмы программирования. Пришло время углубится в одну из них
Процедурное программирование остаётся важной парадигмой, особенно в областях, где требуется высокая производительность и прямой контроль над вычислениями. Несмотря на свои ограничения в моделировании больших и сложных систем, оно продолжает играть ключевую роль в разработке софта, требующего простоты и эффективности.
#простымисловами #парадигмыпрограммирования
Точка входа в программирование
Простыми словами: Процедурное программирование В прошлом посте рубрики я вкратце рассказал про разные парадигмы программирования. Пришло время углубится в одну из них Процедурное программирование остаётся важной парадигмой, особенно в областях, где требуется…
Простыми словами: Функциональное программирование
Про процедурное программирование мы уже рассказали. Теперь поговорим о функциональном.
Функциональное программирование — мощный и полезный инструмент, особенно для задач, где важны надёжность и предсказуемость. Несмотря на сложность овладения, оно предлагает значительные преимущества в поддержке и разработке устойчивых и масштабируемых систем, особенно при работе с большими объёмами данных и сложными вычислениями.
#простымисловами
Про процедурное программирование мы уже рассказали. Теперь поговорим о функциональном.
Функциональное программирование — мощный и полезный инструмент, особенно для задач, где важны надёжность и предсказуемость. Несмотря на сложность овладения, оно предлагает значительные преимущества в поддержке и разработке устойчивых и масштабируемых систем, особенно при работе с большими объёмами данных и сложными вычислениями.
#простымисловами
Forwarded from Zen of Python
Простыми словами: Паттерн «Одиночка»
Про «Фасад» поговорили. Теперь расскажу про другой популярный паттерн.
«Одиночка» (Singleton) полезен, когда необходимо гарантировать существование единственного экземпляра объекта в системе. Но использовать его следует с осторожностью. Хотя он полезен для управления ресурсами и обеспечения согласованности данных, это может привести к сложностям при тестировании и многопоточности. Каждое использование Singleton должно быть тщательно обосновано, чтобы избежать потенциальных проблем и антипаттернов.
#простымисловами #паттерны
Про «Фасад» поговорили. Теперь расскажу про другой популярный паттерн.
«Одиночка» (Singleton) полезен, когда необходимо гарантировать существование единственного экземпляра объекта в системе. Но использовать его следует с осторожностью. Хотя он полезен для управления ресурсами и обеспечения согласованности данных, это может привести к сложностям при тестировании и многопоточности. Каждое использование Singleton должно быть тщательно обосновано, чтобы избежать потенциальных проблем и антипаттернов.
#простымисловами #паттерны
Точка входа в программирование
Простыми словами: Функциональное программирование Про процедурное программирование мы уже рассказали. Теперь поговорим о функциональном. Функциональное программирование — мощный и полезный инструмент, особенно для задач, где важны надёжность и предсказуемость.…
Простыми словами: Логическое программирование
Продолжаем тему парадигм программирования. В прошлый раз говорили про известное многим функциональное программирование. Теперь же поговорим про то, о чем многие не слышали.
Логическое программирование — мощный инструмент для задач, требующих логического вывода и анализа. Оно предоставляет декларативный подход к решению задач, работая с фактами и правилами. Несмотря на ограничения, оно незаменимо в областях, где требуется высокая степень абстракции и интеллектуальный анализ.
🤯 — никогда не слышал про такое
❤️ — хочу писать на Prolog
#простымисловами
Продолжаем тему парадигм программирования. В прошлый раз говорили про известное многим функциональное программирование. Теперь же поговорим про то, о чем многие не слышали.
Логическое программирование — мощный инструмент для задач, требующих логического вывода и анализа. Оно предоставляет декларативный подход к решению задач, работая с фактами и правилами. Несмотря на ограничения, оно незаменимо в областях, где требуется высокая степень абстракции и интеллектуальный анализ.
🤯 — никогда не слышал про такое
❤️ — хочу писать на Prolog
#простымисловами
Точка входа в программирование
Простыми словами: Логическое программирование Продолжаем тему парадигм программирования. В прошлый раз говорили про известное многим функциональное программирование. Теперь же поговорим про то, о чем многие не слышали. Логическое программирование — мощный…
Простыми словами: Декларативное программирование
Декларативное программирование — это подход, ориентированный на результат, который позволяет сосредотачиваться на целях, а не на способах их достижения. Оно упрощает разработку и поддержку кода, однако может ограничивать гибкость в уникальных ситуациях. Такой вариант подходит для задач, где важна высокая абстракция и минимизация ручного вмешательства.
❤️ — если использовал декларативное программирование
#простымисловами
Декларативное программирование — это подход, ориентированный на результат, который позволяет сосредотачиваться на целях, а не на способах их достижения. Оно упрощает разработку и поддержку кода, однако может ограничивать гибкость в уникальных ситуациях. Такой вариант подходит для задач, где важна высокая абстракция и минимизация ручного вмешательства.
❤️ — если использовал декларативное программирование
#простымисловами
Точка входа в программирование
Простыми словами: Декларативное программирование Декларативное программирование — это подход, ориентированный на результат, который позволяет сосредотачиваться на целях, а не на способах их достижения. Оно упрощает разработку и поддержку кода, однако может…
Простыми словами: Мультипарадигменное программирование
Следующее на очереди после декларативного программирования у нас программирование, которое объединяет в себе сразу несколько парадигм. Оно позволяет использовать их сильные стороны, обеспечивая гибкость и расширяемость кода. Этот подход особенно подходит для сложных проектов, где разные задачи требуют разных решений. Однако разработчики должны быть внимательны, чтобы избежать чрезмерного усложнения и сохранить читаемость кода.
#простымисловами #парадигмы
Следующее на очереди после декларативного программирования у нас программирование, которое объединяет в себе сразу несколько парадигм. Оно позволяет использовать их сильные стороны, обеспечивая гибкость и расширяемость кода. Этот подход особенно подходит для сложных проектов, где разные задачи требуют разных решений. Однако разработчики должны быть внимательны, чтобы избежать чрезмерного усложнения и сохранить читаемость кода.
#простымисловами #парадигмы
Точка входа в программирование
Простыми словами: Паттерн «Одиночка» Про «Фасад» поговорили. Теперь расскажу про другой популярный паттерн. «Одиночка» (Singleton) полезен, когда необходимо гарантировать существование единственного экземпляра объекта в системе. Но использовать его следует…
Простыми словами Паттерн «Factory Method»
Продолжаем тему паттернов. Паттерн Factory Method упрощает создание различных объектов, избегая прямой зависимости от их классов. Он особенно полезен, когда вы работаете с семействами похожих объектов, которые могут изменяться или добавляться. Это повышает гибкость и делает проект более масштабируемым.
Подробнее о нём можно узнать в карточках.
#простымисловами #паттерны
Продолжаем тему паттернов. Паттерн Factory Method упрощает создание различных объектов, избегая прямой зависимости от их классов. Он особенно полезен, когда вы работаете с семействами похожих объектов, которые могут изменяться или добавляться. Это повышает гибкость и делает проект более масштабируемым.
Подробнее о нём можно узнать в карточках.
#простымисловами #паттерны
#простымисловами: Различия между MVC, MVP, MVVM, MVVM-C, и VIPER
Эти архитектурные паттерны являются одними из наиболее часто используемых при разработке приложений, как на платформах iOS, так и Android.
MVC (Model-View-Controller) — один из самых широко используемых архитектурных шаблонов. Он разделяет приложение на три основных компонента: модель (представляет данные и бизнес-логику), представление (отвечает за отображение интерфейса) и контроллер (действует как посредник между моделью и представлением).
MVP (Model-View-Presenter) отчасти похож на MVC, но имеет немного другой подход. В MVP посредником между моделью и представлением является презентер , а не контроллер. Презентер отвечает за обновление представления данными из модели и обработку пользовательского ввода и событий.
MVVM (Model-View-ViewModel) — архитектурный шаблон, набирающий популярность и используемый в приложениях со сложными пользовательскими интерфейсами. Он похож на MVP, но с добавлением модели представления (view model), которая отвечает за управление состоянием представления и за предоставление данных из модели в представление.
MVVM-C (Model-View-ViewModel-Coordinator) — это вариация MVVM, с добавлением координатора, который отвечает за управление навигацией между различными экранами или представлениями в приложении. Этот шаблон полезен для приложений, в которых есть несколько управляемых экранов или представлений.
VIPER (View-Interactor-Presenter-Entity-Router) — относительно новая архитектурный шаблон, который похож на MVC, но с добавлением нескольких новых компонентов, включая интерактор (отвечает за обработку бизнес-логики), сущность (представляет данные) и маршрутизатор (обрабатывает навигацию между различными экранами и представлениями).
#паттерны
Эти архитектурные паттерны являются одними из наиболее часто используемых при разработке приложений, как на платформах iOS, так и Android.
MVC (Model-View-Controller) — один из самых широко используемых архитектурных шаблонов. Он разделяет приложение на три основных компонента: модель (представляет данные и бизнес-логику), представление (отвечает за отображение интерфейса) и контроллер (действует как посредник между моделью и представлением).
MVP (Model-View-Presenter) отчасти похож на MVC, но имеет немного другой подход. В MVP посредником между моделью и представлением является презентер , а не контроллер. Презентер отвечает за обновление представления данными из модели и обработку пользовательского ввода и событий.
MVVM (Model-View-ViewModel) — архитектурный шаблон, набирающий популярность и используемый в приложениях со сложными пользовательскими интерфейсами. Он похож на MVP, но с добавлением модели представления (view model), которая отвечает за управление состоянием представления и за предоставление данных из модели в представление.
MVVM-C (Model-View-ViewModel-Coordinator) — это вариация MVVM, с добавлением координатора, который отвечает за управление навигацией между различными экранами или представлениями в приложении. Этот шаблон полезен для приложений, в которых есть несколько управляемых экранов или представлений.
VIPER (View-Interactor-Presenter-Entity-Router) — относительно новая архитектурный шаблон, который похож на MVC, но с добавлением нескольких новых компонентов, включая интерактор (отвечает за обработку бизнес-логики), сущность (представляет данные) и маршрутизатор (обрабатывает навигацию между различными экранами и представлениями).
#паттерны
#простымисловами: Паттерн Observer (Наблюдатель)
Observer отлично подходит для систем, где есть необходимость в автоматическом уведомлении об изменениях. Однако его следует использовать вдумчиво, чтобы избежать излишнего усложнения логики. Паттерн помогает создать динамичные и масштабируемые приложения, такие как системы уведомлений, финансовые инструменты или игровые события.
Подробнее в карточках.
Observer отлично подходит для систем, где есть необходимость в автоматическом уведомлении об изменениях. Однако его следует использовать вдумчиво, чтобы избежать излишнего усложнения логики. Паттерн помогает создать динамичные и масштабируемые приложения, такие как системы уведомлений, финансовые инструменты или игровые события.
Подробнее в карточках.
Что такое стек и куча?
Стек — это область памяти, где хранятся временные данные, например, локальные переменные и параметры функций. Он работает по принципу «последним пришёл — первым ушёл". Когда функция завершается, её данные автоматически удаляются. Стек быстрый, но его размер ограничен.
Куча — это область памяти для данных, которые живут долго, например, объекты или массивы. Данные в куче выделяются вручную или автоматически (например, с помощью сборщика мусора). Она гибче стека, но доступ к ней медленнее.
Пример использования стека:
Пример использования кучи:
Стек используется для временных данных, куча — для долгоживущих объектов. Знание этих областей памяти помогает оптимизировать программы и избегать утечек памяти.
#простымисловами #основы
Стек — это область памяти, где хранятся временные данные, например, локальные переменные и параметры функций. Он работает по принципу «последним пришёл — первым ушёл". Когда функция завершается, её данные автоматически удаляются. Стек быстрый, но его размер ограничен.
Куча — это область памяти для данных, которые живут долго, например, объекты или массивы. Данные в куче выделяются вручную или автоматически (например, с помощью сборщика мусора). Она гибче стека, но доступ к ней медленнее.
Пример использования стека:
def add(a, b):
result = a + b # Локальные переменные хранятся в стеке
return result
Пример использования кучи:
class User:
def __init__(self, name):
self.name = name # Объект "User" хранится в куче
user = User("Alex")
print(user.name)
Стек используется для временных данных, куча — для долгоживущих объектов. Знание этих областей памяти помогает оптимизировать программы и избегать утечек памяти.
#простымисловами #основы
Как работают хэш-функции
Хэш-функция — это алгоритм, который принимает произвольные данные (например, строку или файл) и преобразует их в фиксированную строку определенной длины, называемую хэш-значением.
Два ключевых свойства:
1. Для одного и того же ввода всегда возвращается одинаковый хэш.
2. Невозможно восстановить исходные данные по хэшу (обратное преобразование).
Давайте рассмотрим пример
Возьмём строку
Хэш будет одинаковым для
Пример кода на Python
Результат:
Где используется:
1. Для хранения паролей: Вместо хранения пароля
2. Для ускорения поиска данных: Например, в хэш-таблицах (словарях Python). При добавлении ключа
3. В хэш-таблицах: Структура данных для хранения пар «ключ-значение». Хэш-функция вычисляет индекс, где хранится значение, что ускоряет доступ к данным.
#простымисловами
Хэш-функция — это алгоритм, который принимает произвольные данные (например, строку или файл) и преобразует их в фиксированную строку определенной длины, называемую хэш-значением.
Два ключевых свойства:
1. Для одного и того же ввода всегда возвращается одинаковый хэш.
2. Невозможно восстановить исходные данные по хэшу (обратное преобразование).
Давайте рассмотрим пример
Возьмём строку
"password123"
и пропустим её через хэш-функцию (например, SHA-256). Она вернёт хэш-значение:password123 → ef92b778bae11c00c8cc0d9525c7f90631ad9e11cdec095c9c3af7b06ecf90fc
Хэш будет одинаковым для
"password123"
, сколько бы раз вы его ни рассчитывали. Но если изменить хотя бы один символ, хэш станет совершенно другим.Пример кода на Python
import hashlib
# Пример строки
text = "password123"
# Использование SHA-256 для получения хэша
hash_object = hashlib.sha256(text.encode())
hash_value = hash_object.hexdigest()
print("Хэш:", hash_value)
Результат:
ef92b778bae11c00c8cc0d9525c7f90631ad9e11cdec095c9c3af7b06ecf90fc
Где используется:
1. Для хранения паролей: Вместо хранения пароля
"password123"
его хэш сохраняют в базе данных. Когда пользователь вводит пароль, хэш снова рассчитывается и сравнивается с сохранённым хэшем.2. Для ускорения поиска данных: Например, в хэш-таблицах (словарях Python). При добавлении ключа
"text"
его хэш помогает найти место для хранения значения.3. В хэш-таблицах: Структура данных для хранения пар «ключ-значение». Хэш-функция вычисляет индекс, где хранится значение, что ускоряет доступ к данным.
#простымисловами
Зачем нужны контейнеры в программировании
Контейнеры, такие как Docker, нужны, чтобы создавать лёгкие и изолированные окружения для запуска приложений. Проще говоря, это как коробка, в которую вы кладёте ваше приложение вместе со всем, что ему нужно для работы (например, библиотеки, зависимости, настройки), а потом можете запустить эту коробку где угодно.
Зачем это нужно?
1. «Работает у меня». У вас есть приложение, которое отлично работает на вашей машине. Но на сервере оно не запускается из-за разных версий библиотек или зависимостей. С контейнером такие проблемы исчезают, потому что всё, что нужно приложению, идёт с ним в одном «пакете».
2. Универсальная упаковка. Контейнеры работают одинаково на любом компьютере или сервере, будь то ваш ноутбук, облако или чужая инфраструктура. Это экономит время и нервы.
3. Изоляция. Каждый контейнер полностью изолирован. Если в одном контейнере что-то сломалось или идёт нагрузка, это не повлияет на другие.
Пример из реальной жизни
Представьте, что вы повар и вам нужно приготовить блюдо в чужой кухне. Но в чужой кухне может не быть нужных продуктов, посуды и приборов. Контейнер — это коробка, в которой вы привозите всё, что вам нужно: продукты, кастрюли, специи. Теперь вы можете готовить это блюдо в любой кухне, не беспокоясь о том, что чего-то будет не хватать.
Где это используется?
В разработке: программисты создают контейнер с приложением, и каждый в команде может работать в одинаковых условиях.
В тестировании: легко запускать копии приложения с разными настройками для проверки.
В продакшене: легко развернуть приложение на реальном сервере без сюрпризов.
#простымисловами
Контейнеры, такие как Docker, нужны, чтобы создавать лёгкие и изолированные окружения для запуска приложений. Проще говоря, это как коробка, в которую вы кладёте ваше приложение вместе со всем, что ему нужно для работы (например, библиотеки, зависимости, настройки), а потом можете запустить эту коробку где угодно.
Зачем это нужно?
1. «Работает у меня». У вас есть приложение, которое отлично работает на вашей машине. Но на сервере оно не запускается из-за разных версий библиотек или зависимостей. С контейнером такие проблемы исчезают, потому что всё, что нужно приложению, идёт с ним в одном «пакете».
2. Универсальная упаковка. Контейнеры работают одинаково на любом компьютере или сервере, будь то ваш ноутбук, облако или чужая инфраструктура. Это экономит время и нервы.
3. Изоляция. Каждый контейнер полностью изолирован. Если в одном контейнере что-то сломалось или идёт нагрузка, это не повлияет на другие.
Пример из реальной жизни
Представьте, что вы повар и вам нужно приготовить блюдо в чужой кухне. Но в чужой кухне может не быть нужных продуктов, посуды и приборов. Контейнер — это коробка, в которой вы привозите всё, что вам нужно: продукты, кастрюли, специи. Теперь вы можете готовить это блюдо в любой кухне, не беспокоясь о том, что чего-то будет не хватать.
Где это используется?
В разработке: программисты создают контейнер с приложением, и каждый в команде может работать в одинаковых условиях.
В тестировании: легко запускать копии приложения с разными настройками для проверки.
В продакшене: легко развернуть приложение на реальном сервере без сюрпризов.
#простымисловами
Что такое асинхронность
Сперва немного терминологии. Асинхронность — это способность программы выполнять несколько задач одновременно, не дожидаясь завершения каждого шага. Это особенно полезно, когда программа выполняет долгие операции (например, загрузку данных из сети), но при этом не блокирует выполнение других задач.
Если код работает синхронно, каждая операция выполняется строго по порядку. Это может привести к задержкам:
В примере выше всё остальное в программе «заморожено», пока выполняется
Как работают async/await
В асинхронном программировании код выполняется без блокировки. Программа продолжает работать, пока выполняются долгие задачи.
Пример на Python с
Давайте разберёмся, что здесь происходит:
1.
2.
3.
Асинхронность делает код быстрее и эффективнее, особенно при работе с долго выполняющимися операциями!
#простымисловами #основы
Сперва немного терминологии. Асинхронность — это способность программы выполнять несколько задач одновременно, не дожидаясь завершения каждого шага. Это особенно полезно, когда программа выполняет долгие операции (например, загрузку данных из сети), но при этом не блокирует выполнение других задач.
Если код работает синхронно, каждая операция выполняется строго по порядку. Это может привести к задержкам:
import time
print("Загрузка данных...")
time.sleep(5) # Программа засыпает на 5 секунд
print("Данные загружены!")
В примере выше всё остальное в программе «заморожено», пока выполняется
sleep()
. Если бы это была веб-страница, она зависла бы на несколько секунд.Как работают async/await
В асинхронном программировании код выполняется без блокировки. Программа продолжает работать, пока выполняются долгие задачи.
Пример на Python с
asyncio
:import asyncio
async def загрузка_данных():
print("Загрузка данных...")
await asyncio.sleep(5) # Не блокирует программу
print("Данные загружены!")
async def main():
await загрузка_данных()
asyncio.run(main())
Давайте разберёмся, что здесь происходит:
1.
async
делает функцию асинхронной.2.
await
говорит «подожди, но не блокируй остальную программу».3.
asyncio.run(main())
запускает асинхронную операцию.Асинхронность делает код быстрее и эффективнее, особенно при работе с долго выполняющимися операциями!
#простымисловами #основы