Точка входа в программирование
21.2K subscribers
996 photos
180 videos
2 files
2.53K links
Фундаментальные знания по основам программирования

Разместить рекламу: @tproger_sales_bot

Правила общения: https://tprg.ru/rules

Другие каналы: @tproger_channels

Сайт: https://tprg.ru/site

Регистрация в перечне РКН: https://tprg.ru/zrgj
Download Telegram
Интервью со специалистом по машинному обучению

Если вы задумались над изучением нейронных сетей и работы с данными, то можете посмотреть интервью с инженером-исследователем из Сколтеха. Он рассказал подробно о своей профессии и поделился советами, с чего стоит начинать:

https://youtu.be/pnEqfqPue8w

#data_science #ml
July 2, 2021
Машинное обучение простым языком

Машинное обучение не является чем-то фантастическим. Его суть можно понять, если сравнить с традиционным программированием, как связаны программа, входные и выходные данные:

https://tprg.ru/U7wX

#ml
September 14, 2021
Бесплатный онлайн-учебник по машинному обучению от «Яндекса»

Школа анализа данных «Яндекса» выпустила онлайн-учебник для всех желающих, который содержит только актуальные материалы по машинному обучению:

https://ml-handbook.ru/

Пока доступно все 2 главы, но в будущем добавят остальные. Учебник поможет не только освоить различные темы машинного обучения, но и вспомнить математику.

Советуем обратить внимание на пособие, поскольку по машинному обучению и data science не так много качественных материалов на русском.

#книги #data_science #ml
November 30, 2021
May 10, 2022
3 бесплатных курса по машинному обучению, которые стоит пройти прямо сейчас

В этой статье вы найдёте три бесплатных курса. Каждый из них предлагает свой собственный взгляд на машинное и глубокое обучение и содержит различные типы контента, от видео до практических упражнений по программированию, поэтому новичку стоит изучить все три:

https://apptractor.ru/learn/3-besplatnyh-kursa-po-mashinnomu-obucheniyu-kotorye-stoit-proyti-pryamo-seychas.html

#ml #курс
July 16, 2022
December 27, 2022
February 27, 2023
This media is not supported in your browser
VIEW IN TELEGRAM
April 24, 2023
Краткое введение в Машинное обучение

Прочтение этой статьи даст вам важную базу для понимания работы искусственного интеллекта, что поможет вам увереннее продвигаться в изучении ML. Кстати, она написана без сотен формул и тривиальных рассуждений, которые часто так сложны для начинающих.

#ml #ии #статья
November 3, 2023
Полезные материалы по Data Science и машинному обучению

Автор данной статьи делится полезными материалами для абсолютных новичков и более уверенных специалистов, которые помогут найти и заполнить не только теоретические, но и практические провалы.

#ml #datascience
November 16, 2023
Почему дата-сайентистам нужны ещё и графы

Графы — это абстракция, которую используют для выявления связей между сущностями: множество вершин и множество рёбер, которые их соединяют.

В настоящее время многие крупные компании переходят на графы, мотивируя это тем, что производительность таких методов выше, по сравнению с другими современными ИИ-архитектурами. А по прогнозам Gartner к 2025 году графы будут использоваться в 80% инноваций в области данных и аналитики.

Какие же задачи можно решать графами?
— составлять рекомендации (друзей, товаров, музыки и т.п.);
— выявлять мошенничество;
— строить маршруты;
— ранжировать информацию по достоверности;
— хранить взаимосвязи между сущностями.

Более подробную информацию о том, где используются графы и каким именно образом, а также подборку материалов для их изучения вы сможете найти в этой статье.

#datascience #ml #bigdata
December 16, 2023
​​Полезные материалы по Data Science и машинному обучению

Data Science - довольно сложная сфера, особенно для новичков. С чего стоит начать, на какие темы стоит обратить особое внимание, а какие лучше оставить на потом? Ответы на эти и многие другие вопросы вы сможете найти в этой ценнейшей статье. Её автор — опытный MLOps-инженер в отделе Data- и ML-продуктов Selectel.

В материале не просто даются названия книг и курсов, которые полезно было бы прочитать, но и дается понятие о том, почему это важно знать конкретно эту информацию и чем она поможет в будущем.

#ml #bigdata
December 21, 2023
Forwarded from Нейроканал
December 24, 2023
​​Что почитать: «Как учится машина. Революция в области нейронных сетей и глубокого обучения» Яна Лекуна

Знаменитый учёный в области нейросетей — Ян Лекун стоит у истоков современной технической революции.

В своей книге он, не прибегая к метафорам, делится своим научным подходом на стыке компьютерных наук и нейробиологии, проливая свет на будущее искусственного интеллекта, связанные с ним проблемы и перспективы. 

Эта понятная и доступная книга перенесет вас в самое сердце машины, открывая новый увлекательный мир, который уже является нашей реальностью.

#книги #ml #bigdata
December 27, 2023
​​Как работает обучение без учителя

В обучении с учителем для каждой обучающей ситуации, алгоритму дается понимание, какой ответ с нашей точки зрения тут правильный.
В обучении без учителя для каждой конкретной ситуации такого ответа алгоритму не дается. Алгоритм сам должен научиться решать, как ему поступать в каждом конкретном случае, исходя из конечной оценки совокупности всех его действий.

В этом материале на примерах вы сможете разобраться, какие задачи можно решить с помощью этих методов, какими алгоритмами и есть ли у них недостатки.

#bigdata #ml #datascience
January 8, 2024
​​Что лучше использовать: PyTorch или TensorFlow?

Хотите разобраться в инструментах машинного обучения? Давайте разберём в сравнении PyTorch и TensorFlow:

PyTorch — это простой инструмент, который хорошо дружит с Python и создан на базе библиотеки Torch.

TensorFlow — это большая система от Google Brain, поддерживающая различные платформы и языки программирования. Есть множество предварительно обученных моделей.

У первого из преимуществ простота, гибкость, удобство с Python. Но есть ограничения с визуализацией и сервированием моделей. А TensorFlow хорошо может в производительность и масштабируемость, но иногда подводит с обратной совместимостью и скоростью.

Эта статья поможет определиться с выбором из двух инструментов для конкретной задачи.

#pytorch #tensorflow #ml
February 6, 2024
September 21, 2024
Forwarded from Метод утёнка
October 30, 2024