Data Science by ODS.ai 🦜
46.4K subscribers
625 photos
73 videos
7 files
1.72K links
First Telegram Data Science channel. Covering all technical and popular staff about anything related to Data Science: AI, Big Data, Machine Learning, Statistics, general Math and the applications of former. To reach editors contact: @malev
Download Telegram
Forwarded from Kier from TOP
Dubai Prompt Engineering Championship

Discovered that there is going to be a prompting championship in the end of April held in Dubai with a registration deadline of tomorrow.

There will be 4 tracks:
1. Art
2. Video
3. Gaming
4. Coding

I liked how the team set up the competition itself, looks like they care for the work they do. Hope my submission will be accepted and I’ll get to meet them in person.

Enquiring more I also discovered a One Million Prompters initiative with a course by Dubai Centre for Artificial Intelligence.

Besides this initiative being extremely good is in terms of education and making sure people have an access to the emerging professions, it got me thinking… One Million Prompters can become One Million AI-preneurs spinning up their businesses in TMAs for 1B of Telegram users one day, so this is nothing short of inspiring.

Come join the event if you are around Dubai, let’s talk.

Website: https://challenge.dub.ai/en/
Course: https://dub.ai/en/omp/

#TMA #AIpreneurship #Dubai
👍4🤣2
Forwarded from AbstractDL
M-Attack: как обмануть GPT-4.5 и Gemini

Все привыкли, что атаковать современные мультимодальные модели (типа GPT-4o, Claude, Gemini и т.п.) крайне сложно — особенно, если это black-box модели, где нет доступа к градиентам и архитектуре. Стандартные подходы атак типа "выдать одну картинку за другую" часто генерируют какие-то невнятные шумы, которые либо игнорируются моделью, либо приводят к абстрактным ответам типа "размытое изображение".

Но оказалось, что проблема была не в самих моделях, а в подходе к генерации возмущений. В свежей статье предложили очень простой, но мощный подход — M-Attack:
1. Берём исходную и целевую картинки.
2. На каждом шаге рандомно crop'аем кусок исходного изображения (50-100% площади) и затем ресайзим обратно до исходного размера.
3. Заставляем эмбеддинги этого кусочка максимально приблизиться к эмбеддингам целевого изображения оптимизируясь в white-box режиме по ансамблю открытых визуальных моделей (например, CLIP, ViT и тп).

И всё! После нескольких итераций в центральной области картинки "проявляется" целевая семантика, при этом возмущения выглядят крайне незаметно и аккуратно (в отличие от других подходов).

Авторы добились совершенно впечатляющих результатов: успех атаки (ASR) превышает 90% (!) для GPT-4.5, GPT-4o и даже для o1 и Gemini. Код и датасет из 100 атакованных картинок выложили в открытый доступ.

Статья, GitHub, dataset
🔥7👍4🤔43💊1
This media is not supported in your browser
VIEW IN TELEGRAM
Jointly announcing EAGLE-3 with SGLang: Setting a new record in LLM inference acceleration!

- 5x🚀than vanilla (on HF)
- 1.4x🚀than EAGLE-2 (on HF)
- A record of ~400 TPS on LLama 3.1 8B with a single H100 (on SGLang)
- 1.65x🚀in latency even for large bs=64 (on SGLang)
- A new scaling law: more training data, better speedup
- Apache 2.0

Paper: https://arxiv.org/abs/2503.01840
Code: https://github.com/SafeAILab/EAGLE
SGLang version: https://github.com/sgl-project/sglang/pull/4247

@opendatascience
👍121🔥1
Forwarded from Китай.AI
🔮 CN-AI-MODELS | ИИ модели Китая

🔥 DeepSeek-V3-0324: мощное обновление DeepSeek


Китайская компания DeepSeek неожиданно представила новую версию своей модели — DeepSeek-V3-0324. Несмотря на скромное название "незначительного обновления", эта модель уже вызвала волну обсуждений благодаря своим впечатляющим характеристикам и демократичной цене. При этом разработчики не меняли базовую архитектуру, а лишь улучшили методы обучения!

👉 Кратко: Новая модель превосходит топовые западные аналоги (Claude-3.7-Sonnet, GPT-4.5) в математике и программировании, при этом стоимость её использования в разы ниже!

📊 Ключевые преимущества:
✔️ Улучшенная производительность в:
- Математических задачах (MATH-500, AIME 2024)
- Программировании (LiveCodeBench)
- Общих знаниях (MMLU-Pro, GPQA)

✔️ Новые возможности:
- Генерация сложных отчетов (до 3000 слов без потери качества)
- Улучшено форматирование ответов
- Улучшен вызов инструментов (tool calls)

✔️ Улучшения для разработчиков:
- Создает сложные веб-страницы (до 1000 строк кода за один проход)
- Пишет чистый HTML5, CSS и JavaScript с адаптивным дизайном
- Превращает короткие описания в работающие сайты

💡 Технические детали:
- Параметры модели: 660B (не 680B, как ошибочно предполагали)
- Лицензия: MIT (свободна для коммерческого использования)
- Работает даже на Mac Studio M3 Ultra (~20 токенов/сек)

🔗 Где попробовать?  
Модель уже доступна на HuggingFace и официальной платформе.

#КитайскийИИ #КитайAI #DeepSeek #ИскусственныйИнтеллект #Программирование #OpenSource
🔥112
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
✔️ СuML от NVIDIA: Scikit-learn на скорости GPU – без единой строчки нового кода!

Все мы любим scikit-learn за его простоту и мощь. Но что если ваши модели обучаются слишком долго на больших данных? 🤔 NVIDIA предлагает решение!

Вы берете свой обычный скрипт cо scikit-learn, добавляете всего две строки в начало, и он начинает работать в 10, 50, а то и 100+ раз быстрее на NVIDIA GPU! 🔥

Как это работает?

Библиотека cuml от NVIDIA содержит супероптимизированные для GPU версии многих алгоритмов машинного обучения. С помощью простого вызова cuml.patch.apply() вы "патчите" установленный у вас scikit-learn прямо в памяти.

Теперь, когда вы вызываете, например, KNeighborsClassifier или PCA из sklearn:

▶️Патч проверяет, есть ли у вас GPU NVIDIA.
▶️Проверяет, есть ли в cuml быстрая GPU-версия этого алгоритма.
▶️Если да – запускает ускоренную версию на GPU! 🏎️
▶️Если нет (нет GPU или алгоритм не поддерживается) – спокойно запускает обычную CPU-версию scikit-learn.

Ключевые преимущества:

✔️ Нулевые изменения кода: Ваш scikit-learn код остается прежним. Добавляете только 2 строчки:
import cuml.patch и cuml.patch.apply().
✔️ Колоссальное ускорение: Получите прирост производительности на порядки для поддерживаемых алгоритмов (KNN, PCA, линейные модели, Random Forest (инференс), UMAP, DBSCAN, KMeans и др.) за счет мощи GPU.
✔️Автоматическое переключение между GPU и CPU. Ваш скрипт будет работать в любом случае.

Топ инструмент для всех, кто работает с scikit-learn на задачах, требующих значительных вычислений, и у кого есть GPU от NVIDIA.

👇 Как использовать:

Установите RAPIDS cuml (лучше через conda, см. сайт RAPIDS):


python
conda install -c rapidsai -c conda-forge -c nvidia cuml rapids-build-backend


Добавьте в начало скрипта:


import cuml.patch
cuml.patch.apply()


Используйте scikit-learn как обычно!

Попробуйте и почувствуйте разницу! 😉

Блог-пост
Colab
Github
Ускоряем Pandas

@ai_machinelearning_big_data


#python #datascience #machinelearning #scikitlearn #rapids #cuml #gpu #nvidia #ускорение #машинноеобучение #анализданных
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥214👍3🤡1
This media is not supported in your browser
VIEW IN TELEGRAM
Magic of open source is taking over the Video LoRA space

just dropped👇🔥
🍬LTX video community LoRA trainer with I2V support
🍬LTX video Cakify LoRA
🍬LTX video Squish LoRA
(🧨diffusers & comfy workflow)

the more we build off of each other's advancements, the more you know great things are coming

trainer: https://github.com/Lightricks/LTX-Video-Trainer
LoRA: https://huggingface.co/Lightricks/LTX-Video-Cakeify-LoRA
LoRA2 : https://huggingface.co/Lightricks/LTX-Video-Squish-LoRA

@opendatascience
🔥92👍1
🎉 Выпущен Техрепорт Wan! 🚀

📖 https://arxiv.org/abs/2503.20314

Wan 2.1 — это открытый инструмент для генерации видео от Alibaba.

В отчете описана архитектура модели, конвейер обработки данных, обучение модели, повышение ее эффективности, алгоритм редактирования видео и т. д.

🟢Официальный сайт: https://wan.video
🟢Github: https://github.com/Wan-Video/Wan2.1
🟢HF: https://huggingface.co/Wan-AI
🟢Modelscope: https://modelscope.cn/organization/Wan-AI

#WAN #OpenSource #VideoGeneration
Please open Telegram to view this post
VIEW IN TELEGRAM
👍82🔥2
Forwarded from CV Time
FoundationStereo: Zero-Shot Stereo Matching

Сегодня разбираем статью от NVIDIA. Исследователи решают задачу определения глубины по двум изображениям, снятым с близко расположенных камер, то есть со стереопары. Камеры смотрят в одном направлении, поэтому каждая 3D-точка попадает приблизительно на одну строку в обеих картинках, но в разных местах. Это позволяет искать соответствия между пикселями одной и той же строки двух изображений, и, используя эти соответствия, восстанавливать глубину сцены.

Определив соответствия между точками на двух изображениях, можно вычислить диспаритет — сдвиг координат пикселя на одной картинке относительно другой. Зная диспаритет, фокусное расстояние и расстояние между оптическими центрами камер, можно пересчитать его в глубину.

Исследователи из NVIDIA говорят, что сейчас нет модели стерео-матчинга, которая бы показывала хорошую zero-shot-генерализацию. Текущие лучшие решения предлагается дообучать на целевой домен.

В других задачах проблему генерализации уже удалось решить за счёт больших данных. Например, Segment Anything обучили на огромном датасете, и модель успешно работает без дообучения. NVIDIA попробовала применить этот же подход к стерео-матчингу. Они собрали фотореалистичный синтетический датасет FSD (картинка 2) из миллиона стереопар, превосходя по объёму и многообразию другие открытые датасеты. Датасет выложен в открытый доступ.

Детали архитектуры

Из левого и правого изображений (картинка 1) извлекаются фичи из Depth Anything, конкатенируются с фичами из отдельной обучаемой свёрточной сети. Из этой пары создаётся feature cost volume — объём фичей, где каждая описывает похожесть пикселя на левой картинке на пиксели в той же строке на правой картинке и корреляционный cost volume, где похожесть пикселей описывается единственным числом.

Такие cost volume’ы уже можно использовать для поиска диспаритета, но в них недостаёт глобального контекста картинок. Чтобы его добавить, применяется операция AHCF (Attentive Hybrid Cost Filtering), особенность которой — использование информации из всего cost volume для получения значений в финальном пикселе выходного тензора; это делается с помощью глобального внимания в transformer-ветви AHCF и с помощью аналога separable-свёрток в свёрточной ветви AHCF. Изменение по ablation даёт 10% улучшения по метрике BP-2: доля пикселей, где ошибка диспаритета больше 2 пикселей (0.221 → 0.197).

Дальше процесс похож на описанный в RAFT-Stereo, но с некоторыми отличиями. В RAFT-Stereo сеть получает на вход hidden state и срез из correlation cost volume. В Foundation Stereo получает срезы из correlation cost volume и feature cost volume.

Таким образом, вход в GRU включает:

— срез cost volume в соответствии с текущей оценкой диспаритета;
— фичи левой картинки из отдельно обучаемой контекстной сети (так делалось и в RAFT-Stereo);
— саму текущую оценку диспаритета.
GRU обновляет внутреннее состояние и предсказывает поправку, итеративно уточняя диспаритет.

Детали обучения

Модель обучается на смеси FSD-датасета и других датасетов с smoothed L1-лоссом и экспоненциально затухающими L1-добавками для оценок на диспаритет с разных итераций GRU-юнита.

Данные из FSD дополнительно фильтруют по BP-2, используя эту же модель, обученную на полном FSD-датасете, а затем обучают ёще раз.

Интересное из ablation study:

— использование Depth Anything фичей как входов в feature cost volume не работает совсем (по метрике BP-2);
— в separable-свертках для фильтрации feature cost volume используется ядро размера 17(!) по размерности диспаритета (но 1 по spatial-размерности);
— добавление FSD-датасета в обучение даёт BP-2 на датасете Middlebury в два раза лучше, чем без него.

Разбор подготовил Леонид Штанько

CV Time
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
7👍1🔥1
Forwarded from ML Underhood
YandexGPT 5 Lite Instruct теперь в опенсорсе 🎉

В феврале в открытый доступ вышла Pretrain-версия, а сейчас очередь дошла и до YandexGPT 5 Lite Instruct. Это модель на 8 миллиардов параметров с размером контекстного окна в 32К токенов.

О претрейне мы уже писали вот тут, а алайнмент аналогичен тому, через который проходит YandexGPT 5 Pro. На этапе SFT концентрировались на сложных запросах, а также методах фильтрации и ранжирования данных. В рамках RLHF комбинировали RL-подходы, которые дают лучшие результаты: DPO, LogDPO и PPO. Подробнее об этом читайте на Хабре.

По результатам внутреннего слепого попарного сравнения (side-by-side) новая модель YandexGPT 5 Lite превосходит Qwen-2.5-7B-instruct в 62% случаев и не уступает GPT-4o mini в решении стандартных задач сервисов Яндекса. Показатели бенчмарков можно посмотреть в таблице.

А ещё обновили лицензию: теперь можно использовать модель не только в некоммерческих целях, но и в коммерческих до 10 миллионов выходных токенов в месяц. Если ваши объёмы выше, напишите на почту, указанную в тексте лицензии.

Модель доступна на Hugging Face. Там же есть и квантизованная версия с поддержкой GGUF. YandexGPT 5 Lite Instruct совместима с llama.cpp и Ollama.

ML Underhood
4👍3🔥3
🔥 FP8 mixed precision — где и как DeepSeek снизили точность вычислений?

В прошлом посте мы разобрали, как использование FP8 для матричных операций (GEMM) ускоряет обучение моделей. Теперь давайте посмотрим, какие методы и оптимизации FP8 применялись при разработке DeepSeek-V3 — одной из лучших моделей на данный момент.

⚡️ Особенности FP8 GEMM от DeepSeek

Просто перевести все вычисления в FP8 недостаточно. В обучении встречаются выбросы (outliers) в активациях, весах и градиентах — редкие, но экстремальные значения, которые сильно искажают точность при квантовании. Если их не учитывать, модель может потерять качество.

Вот какие техники использовались в DeepSeek-V3 для FP8-обучения:

🔹 Точечное (fine-grained) квантование
Вместо квантования тензоров целиком они разбиваются на небольшие группы:
▪️ Активации — на «плитки» (tile-wise) 1×128
▪️ Веса — на блоки (block-wise) 128×128
Активации более подвержены выбросам, поэтому требуют более аккуратного квантования. Этот метод снижает влияние выбросов, так как масштабирование подгоняется под меньшие группы элементов.

🔹 FP32-аккумуляция
FP8 ограничен по точности из-за небольшого количества бит для мантиссы. Чтобы минимизировать ошибки округления, промежуточные результаты GEMM копируются в FP32-регистры CUDA Cores и только потом суммируются.
Использование FP32 для аккумуляции выходов тензорных ядер позволяет значительно снизить ошибки, которые возникают при суммировании большого числа результатов умножения маленьких матриц в FP8.

🔥 Другие важные оптимизации

🔹 Использование E4M3 вместо гибридных форматов
Ранее в FP8-обучении использовали гибридные форматы:
▪️ E4M3 для Fprop (прямой проход)
▪️ E5M2 для Dgrad / Wgrad (обратный проход)

В DeepSeek-V3 все операции перевели на E4M3, так как он имеет большую мантиссу → выше точность. Ограниченный динамический диапазон компенсируется tile/block-wise масштабированием.

🔹 Экономия памяти и ускорение коммуникации
▪️ Low-precision оптимизатор — моменты AdamW хранятся в BF16, а мастер-веса и градиенты — в FP32.
▪️ FP8-кеширование активаций — активации сохраняются в FP8 после Fprop, что значительно экономит память.
▪️ Сжатие коммуникации — в распределённом обучении передача данных между узлами — узкое место. В DeepSeek-V3 для части коммуникаций активации перед отправкой сжимаются в FP8, что по заявлениям авторов уменьшает накладные расходы на передачу данных. Однако часть коммуникаций все же сохраняется в BF16 в критических местах.

И главное: качество модели практически не страдает. Ошибка по сравнению с BF16-обучением остаётся в пределах 0.25%, что укладывается в статистическую погрешность.

Авторы не только подробно описали свою методику, но и выложили в open-source реализацию FP8 GEMM с fine-grained scalingDeepGEMM.

Более маленькие типы данных вроде FP8 и bf16 — это не только про ускорение матричных вычислений, но и про эффективное управление памятью и оптимизацию коммуникаций. И как показали DeepSeek, правильная интеграция этих техник позволяет обучать очень большие модели без потери качества!🚀
12
кажется, мы стали забывать, как выглядят по-настоящему большие языковые модели; 1.8 Терабайта на минуточку!

отдельно хочу отметить аббревиатуру SB - это Stupid Backoff, я про такое до сих пор рассказываю на лекциях

я думаю, уже многие догадались, что речь идет про n-граммные языковые модели, но эта статья - вроде бы первое задокументированное употребление выражения Large Language Model, исторический документ
🔥6👍32
Forwarded from CV Time
Тематическая подборка статей: генерация

Подобрали свежие статьи о генеративных моделях. В этот раз — обсуждают, как улучшить токенизацию для диффузионных моделей, дистиллировать CFG и оптимизировать обучение генератора. А ещё есть работа о том, как интерпретировать внимание в Diffusion Transformers и использовать его для сегментации.

Автоэнкодеры

Reconstruction vs. Generation: Taming Optimization Dilemma in Latent Diffusion Models
Авторы говорят, что увеличение числа каналов в автоэнкодере улучшает реконструкцию (что логично), но делает задачу для генератора более сложной, приводя к ухудшению генераций. Предлагают дополнительным лоссом предсказывать признаки от бэкбона (dino/mae/etc) — это делает фичи автоэнкодера более «простыми» для генератора и улучшает его сходимость.

Masked Autoencoders Are Effective Tokenizers for Diffusion Models
Развитие предыдущей работы: связали улучшение качества представления автоэнкодера с уменьшением числа мод в mixture of gaussian модели, и переделали архитектуру автоэнкодера в MAE-трансформер.

Эдитинг

REALEDIT: Reddit Edits As a Large-scale Empirical Dataset for Image Transformations
В статье предлагают парсить Reddit для сбора датасета по эдитингу картинок: брать треды, где пользователи просят отфотошопить их картинки. Отбирают посты до 2021 года, чтобы в них не было применения AI.

Ускорение

DICE: Distilling Classifier-Free Guidance into Text Embeddings
Авторы говорят, что можно дистиллировать Classifier-Free Guidance (CFG), включая negative prompt, в небольшую нейронку поверх текстовых эмбеддов.

Visual Generation Without Guidance
В статье предлагают алгоритм обучения генератора, для которого потом не нужно делать CFG. Заявляют, что это работает лучше, чем дистилляция.

RL

Calibrated Multi-Preference Optimization for Aligning Diffusion Models
Исследователи из Google предлагают метод, который, по их утверждению, лучше, чем Direct Preference Optimization (DPO), благодаря аккуратному выбору пар для обучения и более хитрой функции потерь.

Diffusion Model as a Noise-Aware Latent Reward Model for Step-Level Preference Optimization
Предлагают делать RL непосредственно в латентном пространстве — для этого нужна reward-модель, способная в нём работать. Говорят, что идеально подходит предобученная диффузионная модель, которую можно дообучить на предсказание reward’а. Утверждают, что это упрощает пайплайн обучения и улучшает финальное качество.

Другое

ConceptAttention: Diffusion Transformers Learn Highly Interpretable Features
Авторы говорят, что можно использовать предобученную диффузионную модель для получения SOTA сегментационных масок в zero-shot-режиме. Для этого делают надстройку над аттеншн-слоями в DiT'е.

Подборку подготовил Артём Конев
CV Time
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥5👍31
Forwarded from Machinelearning
✔️ "Speech and Language Processing": 3-е издания книги

Этот открытый учебник считается де-факто стандартом и одним из самых авторитетных и всеобъемлющих ресурсов для изучения областей обработки естественного языка (NLP), вычислительной лингвистики и обработки речи.

🌟 Авторы: Дэн Джурафски и Джеймс Х. Мартин - известные фигуры в области NLP и вычислительной лингвистики. Книга считается классическим текстом, обновленным для включения современных методов, таких как трансформеры, которые доминируют в области NLP.

Книга разделена на три части, включающие 24 основные главы и 8 приложений.

Темы охватывают широкий спектр, включая:
😶Фундаментальные алгоритмы
😶Приложения NLP (Обработки Естественного Языка)
😶Регулярные выражения
😶Нейронные сети и трансформеры,
😶Машинный перевод и другие аспекты NLP
😶Аннотирование (или Разметка) лингвистической структуры.

Для каждой главы доступны слайды в форматах PPTX и PDF, что делает ресурс полезным для преподавателей.

Для всех, кто заинтересован в изучении NLP это фантастически полезный ресурс.

🟡Книга в PDF
🟡Все Главы
🟡Еще книги по NLP

@ai_machinelearning_big_data


#freebook #opensource #nlp
Please open Telegram to view this post
VIEW IN TELEGRAM
👍72🔥2
коллеги из Huawei выпустили диффузионную языковую модель Dream 7B; утверждается, что это лучшая модель в своем классе, соответствующая по качеству современным LLM на трансформерах; что, наверное, не совсем удивительно, учитывая, что она была инициализирована весами Qwen; можно посмотреть на пример ее работы на первой картинке

меня больше заинтересовал график (вторая картинка), на котором можно увидеть соотношение между скорость и качеством генерации, теперь получило объяснение пятикратное превосходство в скорости у моделей Mercury Labs (кстати, тут коллеги тоже их упоминают); тут стоит отметить, что точность (accuracy) является очень примерным показателем качества языковой модели, но так хотя бы понятно, откуда ноги растут

по этому графику можно также сделать вывод, что если мы тратим больше времени, то получаем большее качество, что может быть своеобразным диалектическим развитием идеи рассуждений, которая сейчас стала популярна после выхода на сцену DeepSeek-R1
8👍1
Forwarded from Machinelearning
⚡️ Gemma 3 QAT

Google DeepMind выпустили обновленные версии своих языковых моделей Gemma 3, которые стали значительно эффективнее по использованию памяти без существенной потери производительности.

Ключевая технология: QAT (Quantization-Aware Training)

Что это? QAT — это техника обучения, при которой модель во время дообучения "учится" работать с пониженной точностью вычислений (используя меньше бит для представления чисел). Это имитирует условия, в которых модель будет работать после квантизации (сжатия).

Обычная квантизация после обучения может привести к падению точности. QAT позволяет модели заранее адаптироваться к работе в низкоточном режиме, минимизируя потерю качества после финальной квантизации.

Каждая модель (1B, 4B, 12B, 27B) была дообучена примерно на 5000 шагов с имитацией низкой разрядности весов​. При этом использовался приём, похожий на знание-дистилляцию: оригинальная неквантованная модель выступала в роли «учителя».

Преимущество QAT-подхода для Gemma 3 оказалось колоссальным. Официально заявлено, что квантованные модели Gemma 3 QAT сохраняют качество, практически не упало, при этом требуют в ~3 раза меньше памяти​.

Например, объём памяти для хранения весов самой крупной модели на 27B параметров сократился с ~54 ГБ (в формате bfloat16) до ~14 ГБ в 4-битном целочисленном формате​ – это экономия памяти примерно в ~3–4 раза.

ollama run hf(.)co/google/gemma-3-4b-it-qat-q4_0-gguf

✔️HF


@ai_machinelearning_big_data


#google #gemma #AI #ML #LLM #Quantization
👍5🔥51🥰1
Forwarded from Китай.AI
🔮 CN-AI-RESEARCH | Исследования в области ИИ

🔥 DeepSeek только что выпустил новую статью о масштабировании во время инференса. Грядёт ли R2?


Исследователи из DeepSeek и Университета Цинхуа предложили инновационный подход Self-Principled Critique Tuning (SPCT), который значительно улучшает качество и адаптивность моделей вознаграждения для крупных языковых моделей (LLM).

📌 Ключевые моменты:
- Новый метод позволяет reward-моделям динамически генерировать критерии оценки во время работы
- Значительно превосходит существующие подходы по точности и масштабируемости
- Реализован в модели DeepSeek-GRM-27B на базе Gemma-2-27B

🔧 Как это работает?
1️⃣ Этап 1: Rejective Fine-Tuning — начальная "холодная" настройка модели
2️⃣ Этап 2: Rule-Based Online RL — постоянная оптимизация через генерацию принципов и критики

💡 Технические детали для специалистов:
- Используется мета-RM модель для фильтрации низкокачественных сэмплов
- KL-штраф с высоким коэффициентом предотвращает смещения
- Подход демонстрирует лучшую масштабируемость чем просто увеличение размера модели

🚀 Результаты:
- Превышение производительности моделей с 671B параметрами
- Лучшие показатели на тестах Reward Bench
- Возможность более точной и детальной оценки ответов LLM

Подробнее в оригинальной статье: Inference-Time Scaling for Generalist Reward Modeling

#КитайскийИИ #КитайAI #DeepSeek #RewardModeling #МашинноеОбучение #Нейросети
3👍3🤡3