Forwarded from AbstractDL
Как выкинуть из трансформера все нелинейности и причём тут приватность?
Вы задумывались, насколько безопасно задавать «приватные» вопросы в чатГПТ? Где продать чужую почку и т.п. Наверняка же создатели сервиса имеют доступ к вашему запросу? Невозможно же его прогнать через GPT в зашифрованном виде? На самом деле возможно! Есть алгоритмы «приватного инференса LLM», которые позволяют зашифровать запросы юзера даже от языковой модели, а ответ уже возможно расшифровать только на клиенте пользователя. Пока не буду углубляться, как именно это сделано, скажу только, что ГЛАВНАЯ головная боль таких криптографических протоколов — нелинейности в трансформерах, их тяжело обрабатывать в зашифрованном виде и приходится прибегать к сложнейшим итерационным схемам, раздувающим объём коммуникации в тысячи раз. Выходит, что на генерацию одного токена нужно несколько минут и десятки гигабайтов трафика! Поэтому никто это пока не делает в продакшне, и лучше не спрашивайте у чатгпт, где спрятать труп.
Но помните? У меня была статья про то, что не так уж и нужны нелинейности в трансформерах. Преобразования эмбеддингов от слоя к слою на 99% линейные. Так вот в свежей статье «Entropy-Guided Attention for Private LLMs» авторы попробовали обучить LLM совсем без нелинейностей (оставив только софтмакс). То есть они убрали активации из FF и заменили LayerNorm на линейный аналог. По сути, если бы не этэншн, то трансформер вообще схлопнулся бы в полностью линейную модель и отупел до уровня логистической регрессии.
При такой жёсткой "линеаризации" архитектуры пришлось всего лишь добавить несколько трюков для стабилизации обучения и ШОК: модель нормально обучилась! Небольшие потери в качестве есть, но это крошечная цена за такое упрощение трансформера.
Теперь ждём, что скоро появится нормальное асинхронное шифрование для LLM и OpenAI не узнает, что я спрашиваю у чатгпт и насколько я туп на самом деле.
P.S. Статья классная, но немного обидно, что авторы нас не процитировали.
Статья, GitHub (пустой)
Вы задумывались, насколько безопасно задавать «приватные» вопросы в чатГПТ? Где продать чужую почку и т.п. Наверняка же создатели сервиса имеют доступ к вашему запросу? Невозможно же его прогнать через GPT в зашифрованном виде? На самом деле возможно! Есть алгоритмы «приватного инференса LLM», которые позволяют зашифровать запросы юзера даже от языковой модели, а ответ уже возможно расшифровать только на клиенте пользователя. Пока не буду углубляться, как именно это сделано, скажу только, что ГЛАВНАЯ головная боль таких криптографических протоколов — нелинейности в трансформерах, их тяжело обрабатывать в зашифрованном виде и приходится прибегать к сложнейшим итерационным схемам, раздувающим объём коммуникации в тысячи раз. Выходит, что на генерацию одного токена нужно несколько минут и десятки гигабайтов трафика! Поэтому никто это пока не делает в продакшне, и лучше не спрашивайте у чатгпт, где спрятать труп.
Но помните? У меня была статья про то, что не так уж и нужны нелинейности в трансформерах. Преобразования эмбеддингов от слоя к слою на 99% линейные. Так вот в свежей статье «Entropy-Guided Attention for Private LLMs» авторы попробовали обучить LLM совсем без нелинейностей (оставив только софтмакс). То есть они убрали активации из FF и заменили LayerNorm на линейный аналог. По сути, если бы не этэншн, то трансформер вообще схлопнулся бы в полностью линейную модель и отупел до уровня логистической регрессии.
При такой жёсткой "линеаризации" архитектуры пришлось всего лишь добавить несколько трюков для стабилизации обучения и ШОК: модель нормально обучилась! Небольшие потери в качестве есть, но это крошечная цена за такое упрощение трансформера.
Теперь ждём, что скоро появится нормальное асинхронное шифрование для LLM и OpenAI не узнает, что я спрашиваю у чатгпт и насколько я туп на самом деле.
P.S. Статья классная, но немного обидно, что авторы нас не процитировали.
Статья, GitHub (пустой)
❤11👍6🔥1
Forwarded from Machinelearning
🔥 Sky-T1-32B-Preview 32B - 450$ - это все, что вам нужно, чтобы обучить свою собственную O1 🌟
Модель достигает конкурентоспособных результатов в рассуждениях и кодинге, 82.4 в Math500, 86.3 в LiveCode-East по сравнению с QwQ (85.4, 90.7) и o1-preview (81.4, 92.9) 🎓
Это новая O1 - подобная модель с открытым исходным кодом, обученная за < 450$, полностью открытый исходный код, 17K обучающих данных, , модель превосходит Qwen-2.5-32B-Instruct по всем бенчмаркам 💥
🤗HF: https://huggingface.co/NovaSky-AI/Sky-T1-32B-Preview
@ai_machinelearning_big_data
#llm #ml
Модель достигает конкурентоспособных результатов в рассуждениях и кодинге, 82.4 в Math500, 86.3 в LiveCode-East по сравнению с QwQ (85.4, 90.7) и o1-preview (81.4, 92.9) 🎓
Это новая O1 - подобная модель с открытым исходным кодом, обученная за < 450$, полностью открытый исходный код, 17K обучающих данных, , модель превосходит Qwen-2.5-32B-Instruct по всем бенчмаркам 💥
🤗HF: https://huggingface.co/NovaSky-AI/Sky-T1-32B-Preview
@ai_machinelearning_big_data
#llm #ml
👍18🔥10❤5
Forwarded from Анализ данных (Data analysis)
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍17❤4🔥2
Forwarded from Machinelearning
Оказывается, вам просто нужно правильно стимулировать модель.
Читой воды обучение с подкреплением (RL) может научить модель думать и рефлексировать.
Мы возвращаемся в эпоху AlphaGo: играя в бесчисленные партии Go и максимально увеличивая функцию вознаграждения (выигрыш в игре), используя чистый RL, AlphaGo научился побеждать лучших игроков мира.
Похоже это будет эра LLM RL.
📕 Paper
#DeepSeek #deepseekv3 #reasoning #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥14👍10❤4😁2
Must read and absolute banger of 500 pages.
📕 book
@opendatascience
#nvidia #cuda #freebook
Please open Telegram to view this post
VIEW IN TELEGRAM
😁13👍11❤8🔥2
GPT-3 token embeddings have dimensions in the range of 4,096 to 12,288 (for larger models).
Linguists estimate that basic conversational fluency requires knowing 2,000 to 3,000 words, while an educated speaker may know 20,000 to 40,000 words.
It makes so much sense.
Linguists estimate that basic conversational fluency requires knowing 2,000 to 3,000 words, while an educated speaker may know 20,000 to 40,000 words.
It makes so much sense.
🤡10😁4🔥3🤔2👍1👌1
DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning
Paper submitted by #DeepSeek team has generated significant attention in the AI community.
This work addresses the enhancement of reasoning capabilities in Large Language Models (LLMs) through the application of reinforcement learning techniques. The authors introduce a novel framework, DeepSeek-R1, which aims to improve LLM reasoning abilities by incorporating incentives for logical reasoning processes within their training. This integration of reinforcement learning allows LLMs to go beyond basic linguistic processing, developing sophisticated reasoning methods that can boost performance across a wide array of complex applications.
This approach has cause lots of discussions in different communities, but it definitely opens up the whole new direction of development for the research.
Source: https://arxiv.org/abs/2501.12948
#nn #LLM
@opendatascience
Paper submitted by #DeepSeek team has generated significant attention in the AI community.
This work addresses the enhancement of reasoning capabilities in Large Language Models (LLMs) through the application of reinforcement learning techniques. The authors introduce a novel framework, DeepSeek-R1, which aims to improve LLM reasoning abilities by incorporating incentives for logical reasoning processes within their training. This integration of reinforcement learning allows LLMs to go beyond basic linguistic processing, developing sophisticated reasoning methods that can boost performance across a wide array of complex applications.
This approach has cause lots of discussions in different communities, but it definitely opens up the whole new direction of development for the research.
Source: https://arxiv.org/abs/2501.12948
#nn #LLM
@opendatascience
👍24❤6
Forwarded from GigaDev — разработка GigaChat
🚀 Релиз новой модели GigaChat-20B-A3B-instruct-v1.5!
Представляем обновленную версию с улучшенным alignment, что привело к значительному росту метрик арен
📈 Результаты:
• Arena Hard RU: 20.8 → 29.6 (+8.8)
• Arena General: 41.1 → 49.1 (+8)
• остальные метрики на тех же значениях
🔋 Поддержка контекста: 131К токенов
🎉 Важно! Модель теперь доступна в популярных инструментах:
• llama.cpp
• ollama
• llama-cpp-python
• lm-studio, небольшой гайд.
⚡️ На М4 Pro в Q6 достигает 52 token / sec
💾 Мы подготовили различные GGUF квантизации для тестирования под разные задачи и ресурсы.
🔗 Ссылки:
• HuggingFace (fp32, bf16, int8)
• GGUF версии (bf16, q8, q6, q5, q4)
• Ollama (bf16, q8, q6, q5, q4)
Представляем обновленную версию с улучшенным alignment, что привело к значительному росту метрик арен
📈 Результаты:
• Arena Hard RU: 20.8 → 29.6 (+8.8)
• Arena General: 41.1 → 49.1 (+8)
• остальные метрики на тех же значениях
🔋 Поддержка контекста: 131К токенов
🎉 Важно! Модель теперь доступна в популярных инструментах:
• llama.cpp
• ollama
• llama-cpp-python
• lm-studio, небольшой гайд.
⚡️ На М4 Pro в Q6 достигает 52 token / sec
💾 Мы подготовили различные GGUF квантизации для тестирования под разные задачи и ресурсы.
🔗 Ссылки:
• HuggingFace (fp32, bf16, int8)
• GGUF версии (bf16, q8, q6, q5, q4)
• Ollama (bf16, q8, q6, q5, q4)
👍21🤣6
Forwarded from Machinelearning
Курс содержит пошаговые инструкции с примерами кода, которые помогут научиться создавать автономных агентов с использованием машинного обучения.
Фокус на AI-агентах:
Если вас интересует именно разработка агентов — например, для симуляций, игр или интерактивных систем — данный курс будет полезен.
Каждый урок включает в себя:
- Лекцию, (видео уроки появятся в марте 2025 года)
- Примеры кода на Python с поддержкой Azure AI Foundry и Github Models
- Практические задания
- Ссылки на полезные дополнительные ресурсы
Если это ваш первый опыт работы с агентами, у Microsoft есть еще 1 курс «Генеративный ИИ для начинающих», который содержит 21 урок по построению моделей с помощью GenAI, лучше начать с него.
Переведен на 9 различных языков (русского нет).
▪ Github
@ai_machinelearning_big_data
#course #Microsoft #aiagents #ai #ml #opensource #freecourse
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥9👍6❤1
Forwarded from Machinelearning
1. Руководство по дистилляции от OpenAI
Руководство содержит подробное описание процесса передачи знаний от более крупной модели к компактной, c сохранением высокой производительности модели.
Основные аспекты, рассмотренные в руководстве:
- Сохранение выходных данных крупной модели: Создание набора данных, содержащего предсказания большой модели, которые будут использоваться для обучения меньшей модели.
- Оценка производительности моделей: Сравнительный анализ точности и эффективности как крупной, так и компактной моделей на основе различных метрик.
- Создание обучающих данных для компактной модели: Использование предсказаний крупной модели для генерации обучающего набора данных, способствующего эффективному обучению меньшей модели.
- Оценка дообученной компактной модели: Проверка производительности и точности компактной модели после процесса дистилляции для подтверждения соответствия требованиям.
2. Учебник по дистилляции знаний от PyTorch
Руководство от PyTorch, которое содержит практическое введение в технику передачи знаний для развёртывания моделей на устройствах с ограниченными вычислительными ресурсами.
Основные аспекты руководства:
- Извлечение скрытых представлений: В гайде показано, как получить промежуточные представления из обученной модели для дальнейшего использования.
- Модификация циклов обучения в PyTorch: Здесь рассматривается интеграция дополнительных функций в стандартные циклы обучения для эффективной передачи знаний.
- На примере показан процесс обучения компактной модели, с ипользованием предсказания более сложной модели в качестве ориентира.
Руководство содержит пошаговые инструкции и примеры кода, что делает его ценным ресурсом, если вы хотите научиться оптимизировать свои модели для использования в средах с ограниченными ресурсами.
▪Ссылка
3. Jetson Introduction to Knowledge Distillation от Nvidia
В данном руководстве рассматривается процесс передачи знаний от модели OpenCLIP (vision-language model) к модели ResNet18 для классификации на наборе данных STL10.
Особое внимание уделяется тому, как выбор данных, методы дистилляции и архитектура модели, влияют на итоговую точность.
Кроме того, обсуждаются методы профилирования и оптимизации моделей для их развёртывания на устройствах NVIDIA Jetson Orin Nano.
4. Учебник по дистилляции знаний от Keras
Подробно описывается концепция дистилляции знаний и ее применение в обработке медицинских изображений.
5. Руководство по дистилляции от
huggingface 🤗
Здесь показано, как выполнять дистилляцию знаний шаг за шагом на конкретном примере.
6. Дистилляция знаний для задач компьютерного зрения от huggingface
Здесь рассматривается, как сделать файнтюн ViT-модели в MobileNet с помощью API Trainer из Transformers.
#KnowledgeDistillation #Distillation #openai #keras #tutorial #course #freecourses #huggingface #Nvidia #pytorch
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥7❤3✍1👍1