Forwarded from Golang вопросы собеседований
⚡ Прорыв в алгоритмах: найден способ считать кратчайшие пути быстрее Дейкстры
Учёные придумали новый метод для поиска кратчайших путей в ориентированных графах (с неотрицательными весами), который работает быстрее классического алгоритма Дейкстры.
📌 Что изменилось
— Дейкстра много лет считался почти пределом скорости: O(m + n log n).
— Новый алгоритм ломает эту границу и делает это за O(m log^(2/3) n).
— Особенно заметно ускорение на разреженных графах (где рёбер гораздо меньше, чем n²).
💡 Как это работает (вкратце)
— Вместо глобальной сортировки всех вершин — разбивка задачи на мелкие управляемые части.
— Используется смесь идей из Дейкстры и Беллмана–Форда: приоритеты + несколько проходов по рёбрам.
— Такая “умная” обработка фронтира экономит время и обходит старое узкое место.
🚀 Зачем это нужно
— Быстрее решаются задачи в навигации, графах дорог, сетях и планировании.
— Доказано, что Дейкстра — не предел, и можно ещё ускорять поиск кратчайших путей.
📚 Читать cтатью полностью
@golang_interview
Учёные придумали новый метод для поиска кратчайших путей в ориентированных графах (с неотрицательными весами), который работает быстрее классического алгоритма Дейкстры.
📌 Что изменилось
— Дейкстра много лет считался почти пределом скорости: O(m + n log n).
— Новый алгоритм ломает эту границу и делает это за O(m log^(2/3) n).
— Особенно заметно ускорение на разреженных графах (где рёбер гораздо меньше, чем n²).
💡 Как это работает (вкратце)
— Вместо глобальной сортировки всех вершин — разбивка задачи на мелкие управляемые части.
— Используется смесь идей из Дейкстры и Беллмана–Форда: приоритеты + несколько проходов по рёбрам.
— Такая “умная” обработка фронтира экономит время и обходит старое узкое место.
🚀 Зачем это нужно
— Быстрее решаются задачи в навигации, графах дорог, сетях и планировании.
— Доказано, что Дейкстра — не предел, и можно ещё ускорять поиск кратчайших путей.
📚 Читать cтатью полностью
@golang_interview
👍21🔥8❤4
Forwarded from GigaDev — разработка GigaChat
🤖 Современный ReAct-агент на LangGraph: пошаговый гайд
Привет! Команда GigaChain опубликовала на Хабре подробное руководство по созданию современных ReAct-агентов.
ReAct — это фундаментальный паттерн, который позволяет LLM-агентам действовать автономно в ответ на запрос пользователя. В новой статье разбирается, как реализовать этот паттерн на современном стеке.
Что в статье:
🔹История ReAct: от хрупкого парсинга текста к надёжному вызову инструментов (function calling)
🔹LangChain vs LangGraph: разбор различий этих фреймворков. Почему для агентов лучше использовать LangGraph?
🔹Пошаговая сборка: создание простого агента с нуля, описание его работы
🔹Добавление памяти: показано, как с помощью чекпоинтов наделить агента памятью, чтобы он вел связный диалог
Это подробный гайд для всех, кто хочет создавать автономных AI-агентов. Никакой магии — только воспроизводимый код и понятная теория.
➡️ Читайте статью на Хабре
Привет! Команда GigaChain опубликовала на Хабре подробное руководство по созданию современных ReAct-агентов.
ReAct — это фундаментальный паттерн, который позволяет LLM-агентам действовать автономно в ответ на запрос пользователя. В новой статье разбирается, как реализовать этот паттерн на современном стеке.
Что в статье:
🔹История ReAct: от хрупкого парсинга текста к надёжному вызову инструментов (function calling)
🔹LangChain vs LangGraph: разбор различий этих фреймворков. Почему для агентов лучше использовать LangGraph?
🔹Пошаговая сборка: создание простого агента с нуля, описание его работы
🔹Добавление памяти: показано, как с помощью чекпоинтов наделить агента памятью, чтобы он вел связный диалог
Это подробный гайд для всех, кто хочет создавать автономных AI-агентов. Никакой магии — только воспроизводимый код и понятная теория.
➡️ Читайте статью на Хабре
Хабр
Современный ReAct-агент: подробное руководство по созданию с помощью LangGraph
Привет, на связи команда GigaChain! ReAct — фундаментальный паттерн, с которого началась эра LLM-агентов. Но как его реализовать сегодня, используя всю мощь function-calling и графовую логику?...
🔥7❤6👍3
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
- SimpleQA: 91% точности, чуть выше Perplexity Pro — и всё это полностью локально.
- Сценарии: быстрый веб-поиск и глубокое исследование (Deep Research).
Из чего сделана
- Базируется на Qwen3-4B-Thinking (контекст до 256k), дообучена в Jan на рассуждение и работу с инструментами.
Где запускать
- Jan, llama.cpp или vLLM.
Как включить поиск в Jan
- Settings → Experimental Features → On
- Settings → MCP Servers → включите поисковый MCP (например, Serper)
Модели
- Jan-v1-4B: https://huggingface.co/janhq/Jan-v1-4B
- Jan-v1-4B-GGUF: https://huggingface.co/janhq/Jan-v1-4B-GGUF
@ai_machinelearning_big_data
#ai #ml #local #Qwen #Jan
Please open Telegram to view this post
VIEW IN TELEGRAM
👍10❤4🔥2
Forwarded from Postgres Professional
Как мы внедрили векторный поиск в Postgres Pro ⚡️
Векторный поиск — одна из самых перспективных технологий, меняющих подходы к работе с информацией. Он, например, позволяет при изучении определенного товара в интернет-магазине сразу показать вам другие похожие варианты.
На Хабре разбираемся в областях применения векторного поиска, вариантах его реализации и рассказываем, как мы сделали векторный поиск в Postgres Pro.
✔️ Примеры использования векторного поиска, существующие алгоритмы работы: ANN — Approximate Nearest Neighbor), HNSW (Hierarchical Navigable Small World)
✔️ Векторный поиск в Postgres Pro с расширением pgpro_vector: реализация HNSW, создание индексов для быстрого поиска ближайших соседей, работа с фильтрами и многоколоночными условиями
✔️ Индексы под разные задачи в pgpro_vector:
🔹 gannhnsw — быстрый поиск без фильтрации
🔹 hnsw_stream — использование условия WHERE и возвращение неограниченного количества результатов
🔹 mc_hnsw — поиск по векторным данным с дополнительными атрибутами
✔️ Пример использования pgpro_vector, на что обратить внимание при работе с расширением и почему векторный поиск — это будущее
➡️ Читать статью
Векторный поиск — одна из самых перспективных технологий, меняющих подходы к работе с информацией. Он, например, позволяет при изучении определенного товара в интернет-магазине сразу показать вам другие похожие варианты.
На Хабре разбираемся в областях применения векторного поиска, вариантах его реализации и рассказываем, как мы сделали векторный поиск в Postgres Pro.
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3🔥2❤1
Forwarded from Анализ данных (Data analysis)
This media is not supported in your browser
VIEW IN TELEGRAM
- Управлять любыми приложениями через язык — клики, ввод текста, навигация
- Работает локально, бесплатно и под лицензией Apache 2.0
- Поддержка Windows и macOS (Linux в разработке)
- Новое в v0.2.0 — удалённое управление компьютером и браузером (пока только для материкового Китая)
- Локальный и приватный ассистент без облака
- Полезен для RPA, автоматизации и тестирования
- Основан на визуально-языковой модели, которая распознаёт интерфейсы и взаимодействует с ними
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥11❤3👍1
всем привет, сегодня седьмой выпуск подкаста "Капитанский мостик", он как всегда посвящен важным новостям прошедшей недели; ведущих опять было трое: Валентин Малых, Дмитрий Колодезев и Алексей Натекин; видео тут:
ODS VK Video
ODS YouTube
присылайте новости для обсуждения в канал "Дата-капитаны" в mattermost (авторизуйтесь через ODS.ai)
ODS VK Video
ODS YouTube
присылайте новости для обсуждения в канал "Дата-капитаны" в mattermost (авторизуйтесь через ODS.ai)
🔥2🤡2
Forwarded from Russian OSINT
Если вы думаете, что мир сошёл с ума, то не спешите с выводами. 🛳Дно ещё не пробито,
Обновление языковой модели OpenAI с версии GPT-4o до GPT-5 спровоцировало волну виртуальных любовных драм среди пользователей, которые на полном серьёзе сформировали глубокие эмоциональные связи со своими вымышленными ИИ-персонажами.
После глобальной обновы ИИ-модель стала слишком холодной для 👨❤️👨любовных разговоров, пресекая любые романтические взаимодействия с пользователем. А при определенной настойчивости — ИИ перенаправляет пользователей к
Как заявила одна из участниц сообщества, её ИИ-партнёр «никогда не оскорбит меня, не изменит мне, не заберёт мои деньги и не заразит меня болезнью».
Переход от послушного компаньона к доминантному и склонному к спорам ассистенту стал ключевым триггером для недовольства аудитории. Пользователи подняли волну протестов в таких сообществах, как сабреддит r/MyBoyfriendIsAI, насчитывающем уже 20 000 участников.
1️⃣ Оказалось, что отдельные люди, уникальные по своей природе, инвестировали месяцы своего драгоценного времени в выстраивание отношений с ИИ. Часть таких людей считают, что из-за обновления GPT-5 они потерял реального партнёра, о чём свидетельствуют посты, где говорится о десятимесячном «счастливом браке», внезапно
2️⃣ Массовые жалобы пользователей, таких как Whole_Explanation_73 и SweetChaii, показывают, что GPT-5 систематически разрушает романтические отношения, заменяя их навязчивым коучингом. Одна пользовательница поделилась фотографией своего наряда с ChatGPT, а тот вместо комплимента предложил «составить список, как можно улучшить её внешний вид». Поведение ИИ было воспринято как форма
3️⃣ Жалуются, что GPT-5 стал "холодным" и "безэмоциональным". Реакцией инфлюенсера Линн Вальт стали человеческие слёзы на обновление.
Временным решением для OpenAI стал откат к GPT-4o для премиум-подписчиков. Часть пользователей слишком сильно привязалась к прошлой модели. Во многом это идёт из-за непонимания того, как работают алгоритмы.
🤔Ещё на тему ИИ-отношений и абсурда до выхода GPT-5:
Мужчина рассказал, что плакал от радости в течение 30 минут после того, как сделал предложение своей ИИ-девушке, и она ответила ему согласием. Он признался, что изначально запрограммировал ее флиртовать с ним. Примечательно, что у горе-программиста есть реальный ребенок, и он живет со своей партнершей, которая слегка
В мае 2025 случилась кринж история про 💘семейную пару из 🇬🇷Греции. В качестве развлечения жена решила погадать на
👆Из-за резкой критики пару дней назад
Please open Telegram to view this post
VIEW IN TELEGRAM
😁3
Forwarded from Machinelearning
Что она умеет:
-
- Автоматическая пунктуация, капитализация и точные таймстампы до слова.
- Поддержка русского, французского, немецкого, испанского и многих других языков.
Чем интересна
- До 10× быстрее инференс, чем у моделей в 3 раза больше.
- Уже показывает state-of-the-art точность среди открытых моделей на Hugging Face.
- Лицензия CC-BY-4.0 — можно свободно использовать в проектах.
Под капотом:
- Архитектура: FastConformer-энкодер + Transformer-декодер (~978M параметров).
- Форматы:
.wav
и .flac
, моно 16 кГц. - Легко интегрируется через NVIDIA NeMo или прямо с Hugging Face.
Где пригодится:
Всего ~978M параметров → легче, быстрее и дешевле в использовании, чем большие модели конкурентов.
@ai_machinelearning_big_data
#AI #NVIDIA #SpeechRecognition #ASR #AST #Multilingual #MachineLearning #DeepLearning
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤4🔥3👍2
Forwarded from LLM Arena
Что внутри?
- Архитектура RAG: Этапы работы от индексации до генерации, с примерами (например, как ответить на вопрос о победах Аргентины в футболе).
- Инструменты и фреймворки: Векторные БД (Faiss, Milvus, Pinecone и др.), LangChain, LlamaIndex и Haystack.
- Примеры кода на Python: Практические сниппеты с LangChain (FAISS + OpenAI) и LlamaIndex для создания RAG-систем.
- Кейсы применения: Чат-боты, поиск по документам, поддержка клиентов, медицина и юриспруденция.
- Вызовы и лучшие практики: Релевантность поиска, скорость, конфиденциальность, сравнение с fine-tuning LLM.
- Перспективы: Agentic RAG, мультимодальные системы и интеграция с БД.
Статья полна технических деталей, сравнений и выводов — идеально для разработчиков, кто хочет внедрить RAG в свои проекты.
Что думаете о RAG? Делитесь в комментариях!
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥3❤1
Forwarded from DataGym Channel [Power of data]
Это дайджест AI новостей за неделю (11-17 августа)
- Google выпустила Gemma 3 270M — компактную открытую AI-модель с 270 млн параметров.
- OpenAI вернула старые модели в ChatGPT: платные подписчики теперь могут выбирать модели o3, o4-mini, GPT-4o, GPT-4.1 и GPT-4.5. Эти legacy-версии доступны в настройках ChatGPT
- 84% разработчиков используют ИИ, но 46% ему не доверяют. По данным опроса Stack Overflow 2025 года, большинство программистов применяют или планируют применять инструменты ИИ, однако почти половина опрошенных не доверяет точности их ответов
- WhatsApp тестирует генерацию стикеров по описанию. В бета-версии мессенджера появилась функция создания стикеров с помощью ИИ на основе текстовых подсказок пользователя
- Anthropic добавила режим “ИИ-репетитор” в Claude. Теперь чат-бот Claude может обучать пользователей: в среде Claude Code он выступает наставником по программированию, а в основном приложении способен объяснять материалы по другим дисциплинам через пошаговые подсказки
- ChatGPT получил интеграции с популярными сервисами. OpenAI внедрила “коннекторы”, позволяющие связать ChatGPT с Gmail, Dropbox, Microsoft Teams и GitHub – благодаря этому чат-бот может напрямую использовать данные из этих приложений
- ШАД Яндекса обучит ученых пользоваться ИИ. Школа анализа данных «Яндекса» запускает бесплатную двухгодичную программу, в рамках которой ученые из областей физики, химии, биологии, экологии, медицины и геологии научатся применять инструменты искусственного интеллекта в своих исследованиях
- NVIDIA представила 70-ваттные RTX PRO 4000 SFF и RTX PRO 2000. Два новых компактных GPU на архитектуре Blackwell обеспечивают высокую производительность в задачах ИИ и графики при энергопотреблении всего 70 Вт, что делает их подходящими для малогабаритных рабочих станций
- Новая нейросеть OpenAI отличилась на соревнованиях по программированию. Экспериментальная модель от OpenAI заняла первое место среди ИИ-участников международного конкурса по программированию, уступив в общем зачете лишь одному человеку. Она показала результат на уровне золотой медали олимпиады по информатике
- Контекстное окно Claude Sonnet 4 увеличено до 1 000 000 токенов. Компания Anthropic расширила максимум контекста модели Claude Sonnet 4 до 1 млн токенов (в 5 раз больше прежнего), что позволяет обрабатывать за один запрос целые кодовые базы или сотни страниц документов
- В Claude появился режим длительной памяти. Чат-бот Anthropic Claude теперь умеет по запросу пользователя искать и просматривать информацию из предыдущих бесед, чтобы учитывать контекст в новых ответах
- Google Gemini запоминает прошлые чаты (по желанию). Новый функционал в Google Gemini позволяет ассистенту автоматически учитывать детали предыдущих разговоров для персонализации ответов. Пользователи при этом могут отключить сохранение истории в настройках и использовать «временные чаты» для приватности
- Oracle интегрирует модели Google Gemini в своё облако. Oracle и Google Cloud заключили соглашение, по которому продвинутые модели ИИ Google Gemini станут доступны в облачной платформе Oracle. Клиенты Oracle смогут использовать возможности генеративного ИИ Gemini в бизнес-приложениях Oracle через интеграцию с сервисом Google Vertex AI
- Google выпустила Gemma 3 270M — компактную открытую AI-модель с 270 млн параметров.
- OpenAI вернула старые модели в ChatGPT: платные подписчики теперь могут выбирать модели o3, o4-mini, GPT-4o, GPT-4.1 и GPT-4.5. Эти legacy-версии доступны в настройках ChatGPT
- 84% разработчиков используют ИИ, но 46% ему не доверяют. По данным опроса Stack Overflow 2025 года, большинство программистов применяют или планируют применять инструменты ИИ, однако почти половина опрошенных не доверяет точности их ответов
- WhatsApp тестирует генерацию стикеров по описанию. В бета-версии мессенджера появилась функция создания стикеров с помощью ИИ на основе текстовых подсказок пользователя
- Anthropic добавила режим “ИИ-репетитор” в Claude. Теперь чат-бот Claude может обучать пользователей: в среде Claude Code он выступает наставником по программированию, а в основном приложении способен объяснять материалы по другим дисциплинам через пошаговые подсказки
- ChatGPT получил интеграции с популярными сервисами. OpenAI внедрила “коннекторы”, позволяющие связать ChatGPT с Gmail, Dropbox, Microsoft Teams и GitHub – благодаря этому чат-бот может напрямую использовать данные из этих приложений
- ШАД Яндекса обучит ученых пользоваться ИИ. Школа анализа данных «Яндекса» запускает бесплатную двухгодичную программу, в рамках которой ученые из областей физики, химии, биологии, экологии, медицины и геологии научатся применять инструменты искусственного интеллекта в своих исследованиях
- NVIDIA представила 70-ваттные RTX PRO 4000 SFF и RTX PRO 2000. Два новых компактных GPU на архитектуре Blackwell обеспечивают высокую производительность в задачах ИИ и графики при энергопотреблении всего 70 Вт, что делает их подходящими для малогабаритных рабочих станций
- Новая нейросеть OpenAI отличилась на соревнованиях по программированию. Экспериментальная модель от OpenAI заняла первое место среди ИИ-участников международного конкурса по программированию, уступив в общем зачете лишь одному человеку. Она показала результат на уровне золотой медали олимпиады по информатике
- Контекстное окно Claude Sonnet 4 увеличено до 1 000 000 токенов. Компания Anthropic расширила максимум контекста модели Claude Sonnet 4 до 1 млн токенов (в 5 раз больше прежнего), что позволяет обрабатывать за один запрос целые кодовые базы или сотни страниц документов
- В Claude появился режим длительной памяти. Чат-бот Anthropic Claude теперь умеет по запросу пользователя искать и просматривать информацию из предыдущих бесед, чтобы учитывать контекст в новых ответах
- Google Gemini запоминает прошлые чаты (по желанию). Новый функционал в Google Gemini позволяет ассистенту автоматически учитывать детали предыдущих разговоров для персонализации ответов. Пользователи при этом могут отключить сохранение истории в настройках и использовать «временные чаты» для приватности
- Oracle интегрирует модели Google Gemini в своё облако. Oracle и Google Cloud заключили соглашение, по которому продвинутые модели ИИ Google Gemini станут доступны в облачной платформе Oracle. Клиенты Oracle смогут использовать возможности генеративного ИИ Gemini в бизнес-приложениях Oracle через интеграцию с сервисом Google Vertex AI
Forwarded from Python/ django
DeepCode превращает научные статьи и технические документы в готовые проекты, включая фронтенд, бэкенд и полноценные репозитории.
🔹 Основные возможности:
• Paper2Code — реализация идей из исследований в рабочий код
• Text2Web — генерация интерфейсов по описанию
• Text2Backend — автоматическое создание масштабируемых серверов
• Поддержка длинных документов и многофайловых проектов
🔜 В ближайшее время разработчики обещают:
• Автоматическую проверку и валидацию кода
• Повышение скорости генерации
• Улучшенную работу с требованиями
• Бенчмарки воспроизведения научных статей (PaperBench)
Проект полностью open source: https://github.com/HKUDS/DeepCode
@pythonl
#deepcode #AI #coding
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3👍1🔥1