Data Science by ODS.ai 🦜
46K subscribers
665 photos
77 videos
7 files
1.75K links
First Telegram Data Science channel. Covering all technical and popular staff about anything related to Data Science: AI, Big Data, Machine Learning, Statistics, general Math and the applications of former. To reach editors contact: @malev
Download Telegram
Forwarded from opendatasciencebot
👍1
Forwarded from Gradient Dude
Chinese researchers are very fond of doing extensive surveys of a particular sub-field of machine learning, listing the main works and the major breakthrough ideas. There are so many articles published every day, and it is impossible to read everything. Therefore, such reviews are valuable (if they are well written, of course, which is quite rare).

Recently there was a very good paper reviewing various variants of Transformers with a focus on language modeling (NLP). This is a must-read for anyone getting into the world of NLP and interested in Transformers. The paper discusses the basic principles of self-attention and such details of modern variants of Transformers as architecture modifications, pre-training, and various applications.

📝Paper: A Survey of Transformers.
Color2Style: Real-Time Exemplar-Based Image Colorization with Self-Reference Learning and Deep Feature Modulation

ArXiV: https://arxiv.org/pdf/2106.08017.pdf

#colorization #dl
​​Semi-Autoregressive Transformer for Image Captioning

Current state-of-the-art image captioning models use autoregressive decoders - they generate one word after another, which leads to heavy latency during inference. Non-autoregressive models predict all the words in parallel; however, they suffer from quality degradation as they remove word dependence excessively.

The authors suggest a semi-autoregressive approach to image captioning to improve a trade-off between speed and quality: the model keeps the autoregressive property in global but generates words parallelly in local. Experiments on MSCOCO show that SATIC can achieve a better trade-off without bells and whistles.

Paper: https://arxiv.org/abs/2106.09436

A detailed unofficial overview of the paper: https://andlukyane.com/blog/paper-review-satic

#imagecaptioning #deeplearning #transformer
Forwarded from Towards NLP🇺🇦
DocNLI

Natural Language Inference (NLI) is the task of determining whether a “hypothesis” is true (entailment), false (contradiction), or undetermined (neutral) given a “premise”.

Previously, this task was solved for sentence-level texts. A new work "DOCNLI: A Large-scale Dataset for Document-level Natural Language Inference" to be appeared in ACL 2021 presenting the study for document/paragraph level NLI:
https://arxiv.org/abs/2106.09449v1

In Github repo you can find data and pretrained weights of RoBERTa:
https://github.com/salesforce/DocNLI
For release in HuggingFace we, probably, should wait...

P.S. I am already waiting to test this setup for fake news detection🙃
Forwarded from Denis Sexy IT 🇬🇧
Recently I have found an Instagram of artist from Tomsk, Evgeny Schwenk – he redraws characters from Soviet cartoons as if they were real people. I have applied neural.love neural network which made his drawings even more realistic. Just a bit of Photoshop (mainly for hats) and here we go.

I guess Karlsson-on-the-Roof is my best result.
👍2
RL + NLP + Minecraft = Awesomeness

The video from Data Fest Online 2021 about IGLU Competition which was accepted at competition track of NeurIPS 2021

Link: https://youtu.be/mbDY8uxk9bs
New Coding Assistant Tool From OpenAI and Microsoft

Github announced new tool for improving coding experience: Github's copilot, developed with Microsoft and OpenAI's help. This looks really promosing, at least from the announce perspective: imaging just typing convert_datetime_to_date and getting function for that. Looking forward to the actual demo.

Project: https://copilot.github.com
Blog entry: https://github.blog/2021-06-29-introducing-github-copilot-ai-pair-programmer/
CNBC news post: https://www.cnbc.com/2021/06/29/microsoft-github-copilot-ai-offers-coding-suggestions.html

#OpenAI #microsoft #coding #CS #computerlanguageunderstanding #CLU #Github