NOP::Nuances of Programming
68.1K subscribers
3.26K photos
10 videos
12 files
4.6K links
Любые вопросы по сотрудничеству: @ramilkr
Если нужен токен:
https://telega.in/c/nuancesprog
NOP::Humor - https://t.iss.one/nophumor
NOP::Recruiter Удаленка- https://t.iss.one/nopremote

РКН: 4977653520
Download Telegram
Обзор эффективнейших функций Pandas, востребованных в работе любого ученого по данным: sort_values(), shift(), value_counts(), select_dtypes, mask(), filter(), nlargest() и nsmallest().

https://nuancesprog.ru/p/14300/

@nuancesprog #Python #Pandas
Просто и по существу: познакомимся с модулем sqlite3, рассмотрим основные операции с базой данных SQLite и принцип ее взаимодействия с pandas.

https://nuancesprog.ru/p/14725/

@nuancesprog #SQLite #Pandas #Python
Если Pandas удобно использовать для небольших наборов данных, то Pyspark - отличный инструмент для распределенных вычислений огромных массивов данных. Возьмите на заметку готовую инструкцию по преобразованию кода Pandas в Pyspark.

https://nuancesprog.ru/p/14770/

@nuancesprog #Python #Pandas #Pyspark
Познакомьтесь с 6 функциями, лежащими в основе любого эксплораторного анализа данных. Они позволят сделать первый шаг в исследовании данных в Pandas.

https://nuancesprog.ru/p/14933/

@nuancesprog #Pandas
Пользуетесь ли вы SQL в Pandas? Узнайте, как запросить датафрейм Pandas с помощью SQL, используя возможности и учитывая ограничения библиотеки Pandasql.

https://nuancesprog.ru/p/15179/

@nuancesprog #Pandas #SQL
Знакомьтесь с "великолепной четверкой" методов - assign, map, query и explode. Это самые крутые фичи Pandas. Они сделают ваш код более ясным, элегантным и эффективным.

https://nuancesprog.ru/p/15496/

@nuancesprog #Pandas #Python
Обучающее руководство по извлечению любых данных из твитов посредством пакета Python Tweepy и форматированию их в датафрейм Pandas.

https://nuancesprog.ru/p/15562/

@nuancesprog #Python #Pandas
Рассмотрим продвинутые методы итерирования по строкам, которые заменят iterrows и itertuples. Некоторые из них позволяют повышать производительность почти в две тысячи раз, не снижая при этом читабельности кода.

https://nuancesprog.ru/p/15608/

@nuancesprog #Pandas
Можно ли работать с большими массивами данных при ограниченных вычислительных ресурсах? Можно и очень даже успешно, если использовать пакетную обработку для создания различных агрегаций этих данных.

https://nuancesprog.ru/p/15805/

@nuancesprog #Pandas
Если Pandas удобно использовать для небольших наборов данных, то Pyspark - отличный инструмент для распределенных вычислений огромных массивов данных. Возьмите на заметку готовую инструкцию по преобразованию кода Pandas в Pyspark.

https://nuancesprog.ru/p/14770/

@nuancesprog #Python #Pandas #Pyspark