Neural Networks | Нейронные сети
11.5K subscribers
785 photos
180 videos
170 files
9.44K links
Все о машинном обучении

По всем вопросам - @notxxx1

№ 4959169263
Download Telegram
Data Science / Machine Learning / AI / Big Data (VK)

The NLP Cookbook: Modern Recipes for Transformer based Deep Learning Architectures
Sushant Singh, Ausif Mahmood: https://arxiv.org/abs/2104.10640
#NLP #Transformer #DeepLearning
Data Science / Machine Learning / AI / Big Data (VK)

EXplainable Neural-Symbolic Learning (X-NeSyL) methodology to fuse deep learning representations with expert knowledge graphs: the MonuMAI cultural heritage use case
Natalia Díaz Rodríguez et al.: https://arxiv.org/abs/2104.11914
#NeuralSymbolic #DeepLearning #SymbolicAI
Data Science / Machine Learning / AI / Big Data (VK)

EXplainable Neural-Symbolic Learning (X-NeSyL) methodology to fuse deep learning representations with expert knowledge graphs: the MonuMAI cultural heritage use case
Natalia Díaz Rodríguez et al.: https://arxiv.org/abs/2104.11914
#NeuralSymbolic #DeepLearning #SymbolicAI
Менять автоэнкодер в latent diffusion моделях проще, чем кажется.

🚀 DC-Gen — это новый фреймворк для ускорения диффузионных моделей после обучения.
Он переводит любую готовую модель в глубоко сжатое латентное пространство, снижая затраты и многократно ускоряя генерацию.

🔑 Основное
- Высокое разрешение без потерь качества
Версия DC-Gen-FLUX.1-Krea-12B выдаёт то же качество, что и оригинал, но работает в 53 раза быстрее на H100 при 4K.
С NVFP4 картинка 4K генерируется всего за 3.5 секунды на одной NVIDIA 5090 (20 шагов).
- 💸 Низкая стоимость адаптации
Перевод FLUX.1-Krea-12B в глубоко-сжатый автоэнкодер требует всего 40 GPU-дней на H100.

📄 Статья: https://arxiv.org/abs/2509.25180
💻 Код: https://github.com/dc-ai-projects/DC-Gen
🎨 Модели : https://huggingface.co/collections/dc-ai/dc-gen-6899bb095082244f396203e1

#diffusion #deeplearning #AI
Forwarded from Machinelearning
🔥 Сенсей Карпаты выложил новый репозиторий - полный пайплайн обучения LLM с нуля

В проекте есть всё, чтобы собрать свой ChatGPT-клон за $100 и 4 часа:

> • токенизатор
> • pretraining
> • SFT (supervised fine-tuning)
> • RL (reinforcement learning)
> • оценка модели (eval)

Всего 8 000 строк кода, без лишних зависимостей - идеальный учебный пример, чтобы понять, как реально устроено обучение больших языковых моделей.

💡 Это проект из его нового курса Карпаты LLM101n, и отличная возможность прокачать свои ML-навыки на практике.

Можно арендовать GPU в облаке и запустить всё самому - код уже готов к запуску.

Если запустить обучение модели nanochat на облачном GPU-сервере (например, 8×H100), то примерно через 12 часов обучения (стоимость ~300–400 $) модель достигает уровня GPT-2 по качеству на тестовых наборах (CORE-score).

А если тренировать около 40 часов (затраты ~1000 $), решает простые задачи по математике и коду, набирая:
- 40+ на MMLU
- 70+ на ARC-Easy
- 20+ на GSM8K

🧠 Это бесплатная практика топ уровня от мастера, которую не стоит упускать.

🟠GitHub:https://github.com/karpathy/nanochat
🟠Технические детали: https://github.com/karpathy/nanochat/discussions/1

@ai_machinelearning_big_data


#LLM #nanochat #MachineLearning #DeepLearning #AI #GPT
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM