Машинное обучение / ИИ Бибилиотека
137 subscribers
75 photos
2 videos
3 files
59 links
Книги по машинному обучению
Download Telegram
Forwarded from Machinelearning
📌Монография "Reinforcement Learning: An Overview"

Исчерпывающий материал по обучению с подкреплением (Reinforcement Learning, RL), в котором подробно описываются различные модели среды, задачи оптимизации, исследуется определение компромисса между теорией и практической эксплуатаций RL.

Отдельно рассматриваются смежные темы: распределенное RL, иерархическое RL, обучение вне политики и VLM.

В работе представлен обзор алгоритмов RL:

🟢SARSA;
🟢Q-learning;
🟢REINFORCE;
🟢A2C;
🟢TRPO/PPO;
🟢DDPG;
🟢Soft actor-critic;
🟢MBRL.

Автор - Kevin Murphy, главный научный сотрудник и руководитель команды из 28 ресечеров и инженеров в Google Deepmind. Группа работает над генеративными моделями (диффузия и LLM), RL, робототехникой, байесовским выводом и другими темами.

Кевин опубликовал более 140 статей на рецензируемых конференциях и в журналах, а также 3 учебника по ML, опубликованных в 2012, 2022 и 2023 годах издательством MIT Press. (Книга 2012 года была удостоена премии ДеГроота как лучшая книга в области статистической науки).

🔜 Монография опубликована в открытом доступе 9 декабря 2024 года.


@ai_machinelearning_big_data

#AI #ML #Book #RL
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2
Forwarded from Machinelearning
🦾 Berkeley Humanoid Lite — открытый человекоподобный робот

Калифорнийский университет Беркли представил проект Humanoid Lite — результат многолетних исследований и экспериментов по созданию простых в производстве человекоподобных роботов.

Платформа полностью придерживается принципов Open Hardware: в ней используются свободно распространяемое ПО, серийные комплектующие, доступные в розничной продаже, а также детали, напечатанные на 3D-принтере.

🌟 100 % open-source под MIT-лицензией: прошивки, схемы, BOM, STL-модели, RL-контроллеры
✔️ Open Hardware: доступные в рознице электро- и мехкомпоненты, детали печатаются на обычном FDM-принтере
➡️ Итоговая стоимость сборки — примерно 5 000 USD
⭐️ Модульная конструкция: легко превращается в квадропода или «кенавроподобного» робота
➡️ Экосистема: Isaac Lab / Isaac Sim / MuJoCo, телеметрия через SteamVR-контроллеры

Что доступно:

- Исходный код робота на C++ и Python
- Модели машинного обучения для контроллера движений
- Чертежи пластиковых деталей
- Полный список комплектующих с ссылками на покупку
- Пошаговый сборочный план
- Симуляционные окружения для тренировки и запуска робота


🌟 Что робот умеет уже сейчас
- локомоция: RL-контроллер приводит в заданную точку
- телеприсутствие: человек управляет манипулятором через VR-контроллеры
- навигация: экспериментальные алгоритмы обхода препятствий
- поддержка мелкой моторики

🔥 Как удалось удешевить:
- пластиковые шестерни, напечатанные на 3D-принтере
- циклоидные редукторы, повышающие надёжность пластика
- использование типовых драйверов и контроллеров без кастомных плат

*Clone → Print → Build → Hack!* 🤓

🔜 Проект
🔜 Код
🔜 Схемы

@ai_machinelearning_big_data


#robots #ai #ml #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥2
Forwarded from Machinelearning
🌟 LLM Speedrunning Benchmark: ИИ-ассистенты пока не способны улучшить код, написанный человеком.

Пока одни восхищаются способностью ИИ писать код по текстовому описанию, в компании Марка Цукерберга решили устроить ему настоящее испытание на профессионализм и создали «The Automated LLM Speedrunning Benchmark» — полигон, где нейросетям предлагается не просто написать что-то с нуля, а воспроизвести и улучшить уже существующий код.

В качестве задачи был взят реальный проект NanoGPT, где сообщество энтузиастов соревнуется в максимальном ускорении обучения GPT-2, небольшой языковой модели. Цель - не просто скопировать, а понять и применить конкретную оптимизацию, которую до этого внедрил человек.

🟡Суть эксперимента

ИИ-агенту дают исходный скрипт предыдущего рекордсмена и подсказку одного из 3 уровней: от псевдокода с описанием изменений до полноценной мини-статьи, объясняющей суть улучшения. Агент, получив эти данные, должен внести правки в код так, чтобы приблизиться к скорости обучения следующего рекордсмена.

Эффективность мерили метрикой FSR (Fraction of Speedup Recovered), это доля восстановленного ускорения. Если человек ускорил процесс на 10 минут, а ИИ смог добиться ускорения в 5 минут, его результат — 50% FSR. Такая система позволяет оценить не абстрактные способности модели, а ее умение работать с конкретными, практическими задачами по оптимизации.

🟡Результаты

Итоги оказались, мягко говоря, отрезвляющими. Даже топовые модели (Claude 3.7 Sonnet и Gemini 2.5 Pro), показали очень скромные результаты.

С лучшими подсказками (псевдокод и детальное описание) самые успешные агенты с трудом смогли воспроизвести хотя бы 40% от прироста производительности, достигнутого человеком. Без подсказок их производительность была и вовсе близка к нулю.

Разбор полетов бенчмарка показал, что ИИ-агенты часто генерируют либо просто неработающий код с ошибками времени выполнения, либо код, который компилируется, но не дает никакого прироста скорости, а иногда даже замедляет процесс.

🟡Фреймворк

Авторы не просто опубликовали статью, а выложили весь фреймворк в открытый доступ, так что любой желающий может самостоятельно погонять практически любые модели.

В основе фреймворка лежит гибкий агентский каркас, который имитирует рабочий процесс исследователя: генерация идеи, реализация в коде, запуск эксперимента и анализ результатов.

Каждая итерация ИИ-агента аккуратно сохраняется в отдельную версию, создавая полную историю всех правок, от удачных до провальных.

Установка максимально проста, а для тех, кто хочет воспроизвести эксперименты из статьи, авторы приложили готовые скрипты. Также можно легко добавить и протестировать другие модели, просто создав для них конфиг или дать ИИ другую задачу, не связанную с NanoGPT - определять кастомные таски тоже можно.


📌Лицензирование: MIT License.


🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #Benchmark
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
3🔥2
Forwarded from Machinelearning
Media is too big
VIEW IN TELEGRAM
✔️ IBM совершила прорыв в квантовых вычислениях: на обычных FPGA-чипах

Всего через два дня после новости от Google - ещё один крупный квантовый прорыв.

IBM заявила, что один из её ключевых алгоритмов квантовой коррекции ошибок теперь способен работать в реальном времени на FPGA-чипах AMD, без использования экзотического оборудования.

Это делает квантовые вычисления быстрее, дешевле и ближе к практическому применению, чем ожидалось.

Алгоритм, который отслеживает и исправляет ошибки кубитов «на лету»,показал производительность в 10 раз выше необходимой, что стало важным шагом к созданию квантового компьютера Starling, запланированного на 2029 год.
Теперь IBM утверждает, что проект идёт на год впереди графика.

Исследовательская статья выйдет в понедельник.
Темп развития квантовых технологий заметно ускоряется.
reuters

✔️ Microsoft представила AI-браузер Edge - ответ на OpenAI Atlas

Через два дня после запуска OpenAI Atlas Microsoft представили обновлённый браузер Edge с новым режимом Copilot Mode. Это полноценный AI-бразуер, который понимает контекст вкладок, выполняет действия и способен продолжать проекты, используя историю пользователя.

Функция Actions позволяет голосом или через чат открывать страницы, находить нужную информацию, отписываться от рассылок и даже бронировать рестораны. Система Journeys группирует прошлую активность по темам и помогает вернуться к незавершённым задачам, предлагая логичные следующие шаги. Включение Page Context даёт Copilot доступ к истории для более точных и персонализированных ответов, однако это остаётся опциональной функцией, которую можно отключить в любой момент.

Edge также получил встроенный AI-защитник от фейковых всплывающих окон, менеджер паролей с проверкой на утечки.

Браузер уже доступен в странах, где работает Copilot, на Windows и macOS.
Microsoft

✔️ Google добавили reasoning в Google Earth

Google представила фреймворк Geospatial Reasoning на базе Gemini, который объединяет предиктивные модели и данные в единую систему анализа Земли.
Теперь ИИ способен рассуждать о реальных процессах, например, предсказывать землетрясения, оценивать риски и предлагать план эвакуации.

Система уже применяется в ВОЗ (WHO AFRO) для прогнозов вспышек холеры и у McGill & Partners для расчёта ущерба после ураганов.

Google превращает Google Earth из карты в разумный аналитический инструмент планеты.
google


✔️ Исследователи создали систему DiscoRL (Discovered Reinforcement Learning), где модель сама открыла правило обучения с подкреплением, не опираясь на человеческие алгоритмы вроде Q-Learning или PPO.

Мета-обучатель наблюдал за множеством агентов в разных средах и вывел универсальное правило обновления, которое улучшает поведение моделей без ручной настройки.
В итоге DiscoRL победил лучшие алгоритмы на Atari 57 и успешно перенёс этот навык на новые задачи.
nature

✔️ Hugging Face выпустила OpenEnv: универсальную среду для создания AI-агентов

Hugging Face открыла OpenEnv -платформуа где можно собирать, обучать и масштабировать агентов под ваши задачи.
Внутри уже есть всё: инструменты, плагины, API и поддержка обучения с подкреплением - без сторонних библиотек.

OpenEnv позволяет создавать системы, где агенты взаимодействуют, распределяют задачи и выполняют их самостоятельно.
Платформа полностью открыта и готова к использованию без ограничений.
HF

✔️ Qwen3-Max вышла в лидеры среди AI-трейдеров

На криптобенчмарке AlphaArena модели ИИ торгуют по $10 000 на площадке Hyperliquid, чтобы проверить качество торговых стратегий.
После старта, где лидировала DeepSeek V3.1, а GPT-5 показывала убыток около −39 %, Qwen3-Max обошла всех и заняла первое место.

Все участники - Qwen3-Max, DeepSeek V3.1, Claude 4.5 Sonnet, Gemini 2.5 Pro, Grok 4 и GPT-5 — торгуют в одинаковых условиях без приватных данных, что делает тест прозрачным.
На Polymarket оценивают шансы Qwen3-Max удержать лидерство в 45 %.

Организаторы планируют расширить эксперимент на акции и другие активы и запустить инвестплатформу для AI-агентов.

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM