Machine learning Interview
24.9K subscribers
1.08K photos
82 videos
12 files
741 links
Разбираем вопросы с собеседований по Machine Learning, Data Science, Deep Learning и Нейронным сетям, Python.

Вопросы - @notxxx1


@itchannels_telegram -🔥лучшие it каналы

РКН: clck.ru/3FmwRz
Download Telegram
🧠 Наконец-то кто-то создал leetcode для машинного обучения.

Этот сайт предлагает задачки разной сложности в категориях линейной алгебры, машинного и глубокого обучения, анализа данных.

Он полезен для всех, кто хочет углубить свои знания, улучшить навыки и попрактиковаться в машинном обучении. На сайте указаны уровни сложности, есть интерфейс для ввода своего решения и правильные ответы.

Только что выполнил первое упражнение: вычисление матрично-векторного произведения без каких-либо тензорных операций (разрешены только списки на python).

https://deep-ml.com

@machinelearning_interview
43👍13🔥91😁1
🌟 Количественные методы с использованием R

В этой свободной книге представлены практические примеры, которые легко можно применить к любому набору данных, плюс детально обсуждается, как работает каждый пример.
Здесь рассматривается описательная и базовая статистика, включая анализ графиков, распределения, дисперсию, вероятность, проверку гипотез, корреляцию, простую регрессию и тесты 𝛘-квадрат.

Будет полезно начинающим ML-специалистам и не только

🟡 Quantitative Methods Using R

@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
12👍4🥰2👎1😁1🖕1
📌Deep Learning на практике

Очень полезный практический учебник/туториал по Deep Learning;
каждый раздел подробно объясняет, что происходит в конкретном Jupyter Notebook'е

Вот некоторые из затрагиваемых тем:
— NLP и работа с текстом
— классификация изображений
— распознавание (начиная с классического MNIST и до более сложных примеров)

🟡 Deep Learning на практике
🖥 Ноутбуки на GitHub

@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍157🔥41
📌 Applied Statistics with R — отличная книга для аналитиков, ML-инженеров и специалистов по DS

Здесь подробно объясняется линейная и логистическая регрессия и как работать с ними в R, описываются параметры данных такие как гомоскедастичность, гетероскедастичность и т.д.
Приведено много формул, при этом всё детально объясняется

🟡 Applied Statistics with R

@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
7👍4🔥31😁1
🌟 Основные методы рекомендательной системы — подробный блокнот Kaggle

Этот блокнот Kaggle — практическое введение в основные методы рекомендательных систем.

В частности, здесь рассматриваются такие методы как:

— коллаборативная фильтрация: этот метод делает автоматические прогнозы (фильтрацию) об интересах пользователя, собирая информацию о предпочтениях или вкусах других пользователей (похожих на данного). В основе такого подхода лежит предположение: если человек A выбирает те же товары, что и человек B, то вероятность того, что A будет придерживаться мнения B по данному товару, выше, чем вероятность, что мнение А совпадёт с мнением случайного человека

— фильтрация на основе содержимого: этот метод использует для моделирования предпочтений пользователя только информацию об описании и атрибутах товаров, которые он ранее употреблял. То есть, такие алгоритмы пытаются рекомендовать товары, похожие на те, которые нравились пользователю в прошлом

— гибридные методы, сочетающие коллаборативную фильтрацию и фильтрацию на основе контента

🟡 Блокнот Kaggle с пошаговой реализацией

@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
10👍4🔥41😁1
🌟 Репозиторий с основной теорией по Data Science и Machine Learning

Здесь конспективно приводится самая основная информация с формулами и графиками, в частности говорится о таких понятиях:
— наивный Байесовский классификатор
— метод XGBoost
— кластеризация/классификация
— метод случайного леса
— обучение нейросети, признаки переобучения
— и также затрагивается множество других тем/алгоритмов

Неплохой репозиторий, чтобы полистать перед собеседованием

🖥 GitHub

@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
164👍4👏1
🌟 Подборка Colab'ов с реализацией ML-алгоритмов, связанных с обработкой изображений

Если конкретно, здесь реализованы алгоритмы удаления фона изображения, апскейлинга, сегментирования, алгоритмы распознавания частей лица и т.д.

🟡 Google Colab'ы с кодом

@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍18🔥63😁32