Machine learning Interview
34K subscribers
1.38K photos
106 videos
13 files
940 links
Разбираем вопросы с собеседований по Machine Learning, Data Science, Deep Learning и Нейронным сетям, Python.

Вопросы - @notxxx1


@itchannels_telegram -🔥лучшие it каналы

РКН: clck.ru/3FmwRz
Download Telegram
🧠 Почему у моделей пропадает «рандомность» во время RL-обучения - и как это чинится

Новая работа разбирает, почему у моделей во время RL для reasoning рушится энтропия (то есть исчезает разнообразие ответов) - и что с этим делать.

Главные выводы:

- 📉 Хорошего набора в ~600 задач хватает, чтобы догнать обучение на 17 000.
Ключ - разнообразие, а не размер датасета.

- 🎯 Reward сужает модель.
При обучении она начинает повторять несколько самых “прибыльных” токенов → энтропия падает → исследование ухудшается.

- 🔄 Меньше энтропии → меньше разнообразия, но измеренная энтропия по промптам почти не коррелирует с точностью.

- ⚙️ Адаптивный энтропийный регуляризатор удерживает «случайность» на целевом уровне, при этом точность продолжает расти.

- 🧪 Off-policy обновления усиливают коллапс, поднимают reward и ломают обобщение — классический overfitting.

- 🧩 Низкое разнообразие данных ускоряет коллапс, но маленький *разнообразный* датасет иногда работает так же хорошо, как полный.

- 🔧 Клиппинг и reweighting позитивных advantage-токенов (например, Progressive Advantage Reweighting) помогают управлять энтропией и борот

arxiv.org/abs/2511.05993
👍143
За 2,5 часа прокачаем маркетинг с нейросетями

Технари, проходите мимо — здесь эфир для ребят из маркетинга.

25 ноября приходите на онлайн-интенсив по AI. Вас ждет:

📈 Кейс-стади. COFIX, CDEK, Звук и Gulliver расскажут, как оптимизировали маркетинг с ML и LLM. С результатами в цифрах!

Например, Cofix ускорил обработку клиентских отзывов в 7000 раз. А Gulliver удвоил CTR товарных карточек на маркетплейсах.

👨‍🏫 Воркшоп по промптингу. Эксперты в прямом эфире помогут сегментировать клиентов, персонализировать рассылки и рекламу с ChatGPT.

📅 25 ноября, 11:00–13:30 мск
💻 Онлайн, бесплатно

Зарегистрироваться

Реклама. ООО «Майндбокс», ИНН: 7713688880, erid: 2W5zFGW2iDn
3😁1
🤖 Как объединить десятки экспертных моделей в одну универсальную- без дообучения и утечки данных?

Исследователи из CAS, HKISI-CAS, Sun Yat-sen и Peking представили новый подход: RobustMerge — метод бес-тренировочного, параметро-эффективного объединения моделей.

Проблема:
Каждая экспертная модель умеет своё — одна для OCR, другая для зрения, третья для диалога, четвёртая для кода.
Но как собрать их в одно универсальное MLLM так, чтобы:

- не было утечки данных
- не пришлось обучать всё заново
- не потерялась точность
- модель не развалилась из-за конфликтующих весов

🧠 Что делает RobustMerge
Метод сохраняет *direction robustness* - устойчивость направлений веса — с помощью двух ключевых техник:

- low-rank analysis — выделяет главное направление знаний
- cross-task normalization — нормализует вклад разных задач так, чтобы одна модель не «забивала» другую

Итог:
Разные специализированные модели становятся одним универсальным MLLM, который продолжает хорошо работать по всем направлениям и даже улучшает обобщение.

🚀 Почему это важно
Это решает главную боль индустрии: как собрать десятки экспертов в единую систему без огромных затрат на переобучение и без риска смешать приватные данные.

🔬 Подробности
Paper: arxiv.org/abs/2502.17159
Code: github.com/AuroraZengfh/RobustMerge
👍72🆒2