Machine learning Interview
24.9K subscribers
1.09K photos
82 videos
12 files
748 links
Разбираем вопросы с собеседований по Machine Learning, Data Science, Deep Learning и Нейронным сетям, Python.

Вопросы - @notxxx1


@itchannels_telegram -🔥лучшие it каналы

РКН: clck.ru/3FmwRz
Download Telegram
This media is not supported in your browser
VIEW IN TELEGRAM
Эндрю Ын (Andrew Ng) считает, что шумиха вокруг AGI (искусственного общего интеллекта) сильно преувеличена — люди ещё долго будут играть важную роль.

💡 Главное — не создавать ИИ с нуля, а уметь заставить компьютер делать то, что нужно именно вам с его помощью.

🧰 Не обязательно самому разрабатывать инструменты — достаточно научиться ими пользоваться.

📈 В будущем те, кто умеет работать с ИИ, будут гораздо сильнее и эффективнее тех, кто не умеет.
23👍7🔥2
E-CUP возвращается. Реальные данные. Масштабные проекты. Большие призы

Решайте ML-задачи в стиле Ozon Tech и узнайте, как работают ML-инженеры в e-com бигтехе. Девять победителей разделят призовой фонд — 7 200 000 рублей 🔥

🗓 Регистрация: https://cnrlink.com/ecup25mlinterview
💻 Формат участия: онлайн
👥 Команда: от 1 до 5 человек
🎯 Для кого: Data Scientists, ML-специалисты, аналитики данных, дата-инженеры, специалисты Big Data и разработчики, которые интересуются ML/DS.

Что вас ждёт:
🔹 Работа над проектом для миллионов пользователей на основе данных от ведущего e-com в России.
🔹 Обмен опытом с экспертами Ozon Tech.
🔹 Питчинг — 13 сентября на конференции E-CODE. Ozon Tech предоставит финалистам билеты и оплатит поездку.

Каждый трек E-CUP — реальная e-com задача, как в настоящей продуктовой ML-команде.
1️⃣ Рекомендации: предсказание следующей покупки пользователя
2️⃣ Логистика: автопланирование курьеров
3️⃣ Контроль качества: автоматическое выявление поддельных товаров

Регистрация на платформе Codenrock: https://cnrlink.com/ecup25mlinterview
Please open Telegram to view this post
VIEW IN TELEGRAM
4👍1
📄 Хотите, чтобы резюме работало на вас? Teal — нейросеть, которая поможет выделиться даже на фоне кандидатов уровня FAANG

Что делает Teal:

Подгоняет резюме под вакансии — анализирует описание должностей и ключевые слова, чтобы предложить точные и релевантные формулировки.

Готовит к интервью — на основе анализа вакансии предлагает вопросы и советы, как подать себя максимально убедительно.

Удобный интерфейс — онлайн-конструктор с шаблонами + возможность импортировать профиль из LinkedIn.

Если вы хотите, чтобы ваше резюме действительно заметили — начните с правильного инструмента.

https://tealhq.com/

@machinelearning_interview
👍8🔥43
Кто создает будущее: исследователи или бизнес?

Дискуссия с экспертами в области искусственного интеллекта:
🔶 Иван Оселедец, генеральный директор института AIRI
🔶 Андрей Рыбинцев, старший директор по ИИ в Авито

Модератор: Анастасия Мануйлова, обозреватель «Коммерсантъ» — эксперт в сфере социально-экономических трансформаций общества.

📅 17 июля, 19:00
📍 офис Авито в Москве и онлайн
➡️ заявка на участие по
ссылке

Авито приглашает студентов и исследователей на дискуссию о развитии карьеры и выборе пути в сфере ИИ. А после паблик-тока — на неформальный вечер с экспертами, где участники смогут задать вопросы и наладить полезные контакты.

Эксперты обсудят:
- Что дает наука бизнесу и может ли современный технологический сектор развиваться без фундаментальных исследований?
- Как происходит трансфер технологий в области ИИ из науки в коммерческий сектор и обратно?
- Как начинающему специалисту выбрать между академической карьерой и работой в бизнесе?
- Какие возможности открываются для молодых специалистов от сотрудничества науки и бизнеса?

Приглашаем для полезного нетворкинга, новых знакомств и возможности получить ответы на ваши вопросы напрямую от экспертов рынка!

Подать заявку на участие можно по ссылке – места ограничены, участники будут подтверждены исходя из темы дискуссии. Для подтверждения придет приглашение на почту. А все желающие смогут следить за трансляцией онлайн.
🔥43🥰2
🔥 Awesome Tensor Compilers — энциклопедия компиляторов для тензорных вычислений. Этот репозиторий представляет собой сборник различных проектов для разработчиков, работающих с оптимизацией ML-моделей. Здесь собраны ключевые инструменты вроде TVM, MLIR и Triton, а также сотни исследований по автоматической оптимизации тензорных операций на CPU, GPU и специализированных ускорителях.

Помимо готовых компиляторов, в репозитории есть разделы с научными работами по cost-моделям, автоматическому планированию вычислений и методам верификации. Каждый проект или статья сопровождается ссылками.

🤖 GitHub

@machinelearning_interview
10
🍏 Apple всерьёз задумалась о покупке Mistral — Bloomberg / Марк Гурман

По информации Bloomberg, Apple серьёзно рассматривает покупку французского стартапа Mistral AI, чтобы наконец войти в ИИ-гонку.

Это очень поздний шаг — но он показывает, насколько сильно Apple отстала от OpenAI, Google и даже xAI.

Пока другие выкатывают публичные LLM, мультимодальные ассистенты и интеграции в поиске, Apple остаётся в роли наблюдателя.

📌 Почему это важно:
- Mistral — один из главных open-source игроков на рынке ИИ (выпускают мощные LLM и Mixture of Experts-модели)
- У Apple пока нет ни собственной модели, ни сильной стратегии в области ИИ
- Приобретение Mistral может стать экстренной попыткой догнать конкурентов

Если сделка состоится — это будет крупнейший AI-манёвр Apple за всё время.

#Apple #Mistral #AI #LLM #ГонкаИИ

@machinelearning_interview
4👍3🔥2
🚀 15 AI‑инструментов, которые стоит взять на вооружение

Подборка популярных инструментов, которые уже сегодня помогают создавать, автоматизировать и масштабировать работу быстрее в разы:

🎬 Работа с видео
1. Runway.ml — генерация видео по тексту
2. Veed.io — монтаж, субтитры, озвучка онлайн
3. Invideo.io — создание роликов за минуты

🧠 Помощь в мышлении и генерации
4. ChatGPT.com — ассистент для ресёрча, генерации и правок
5. Grok.com — AI-помощник с быстрым доступом к знаниям
6. Deepseek.ai — генерация и анализ текста
7. Claude.ai — диалоговый ассистент от Anthropic
8. Perplexity.ai — умный поисковик с цитируемыми источниками

💻 Код, задачи и коммуникации
9. Cursor.com — AI-помощник для программиста
10. Notion.com — организация, заметки, задачи с AI-поддержкой
11. HubSpot.com — маркетинг, автоматизация и CRM
12. Canva.com — графика, презентации, визуал для соцсетей
13. Figma.com — интерфейсы, прототипы, совместная работа

🎨 Творчество
14. Midjourney.com — генерация изображений по промптам
15. RecCloud.com — быстрые AI-клипы и нарезки видео

#AI #FutureOfWork #Productivity #AItools #Automation

@machinelearning_interview
🥱53👍3🔥2
🔧 Дифференцируемое программирование для оптимизации рабочих процессов LLM — эффективно

В работе рассматривается, как встроить обучаемые маршрутизаторы (router'ы) прямо в цепочки вызовов LLM-агента. Вместо ручной маршрутизации по инструментам — пусть агент сам решает, какой инструмент и когда использовать — благодаря дифференцируемому программированию.

Особенности:
Используются локальные learnable-router’ы, реализованные через PyTorch и DSPy
Работают как дифференцируемые майнеры — выбирают наиболее подходящий инструмент
Экономят токены и снижают затраты благодаря оптимальной маршрутизации
Структурируют agent’ские workflow так, чтобы не перегружать LLM лишними данными

Почему это важно:
Меньше токенов → короче запросы → ниже стоимость и быстрее ответы
Меньше статики — маршруты адаптивные и обучаемые
Больше контроля — можно быстро донастраивать выбор инструментов

Кому это нужно:
– Разработчикам LLM-агентов, которые хотят сделать авто-подбор инструментов
– Интеграторам, стремящимся оптимизировать цепочки вызовов для экономии ресурсов
– Исследователям DSP и PyTorch, работающим над LLM-архитектурами

💡 Итог:
Добавление дифференцируемых роутеров — простой шаг, который даёт эффективную автоматическую маршрутизацию инструментов. Это ускоряет, оптимизирует и делает work‑flow умнее.

📌 Читать полностью
👍63🔥2
В эпоху бума нейросетей неудивительно, что Data Science и ML — среди самых высокооплачиваемых профессий в ИТ (по данным «Хабр»).

Освоить перспективное направление можно в онлайн-магистратуре «Прикладной анализ данных и машинное обучение» от МИФИ и Skillfactory. Это привычная магистратура, но учиться вы будете онлайн в удобное время.

За два года получите фундаментальные знания с фокусом на практику от преподавателей вуза и экспертов из крупных компаний. Освоите Data Science и Machine Learning с нуля до продвинутого уровня. Выберете направление — ML или MLOps. В финале получите диплом гособразца МИФИ. 

При этом сохраняются все студенческие льготы, включая отсрочку от армии. А с господдержкой обучение может стоит от 198 р/месяц. Чтобы поступить, нужен диплом о высшем образовании или студенческий билет последних курсов вуза.

Подавайте заявку до 25 июля и получите бесплатно доступ к курсу на выбор стоимостью до 300 000 рублей, а также к курсу по математике для подготовки к вступительным испытаниям.

Реклама. ООО "СКИЛФЭКТОРИ". ИНН 9702009530. erid: 2W5zFG8ALYQ
🔮 Awesome Quantum Machine Learning — исчерпывающая коллекция ресурсов по квантовому машинному обучению, собранная энтузиастами со всего мира. Этот проект объединяет всё: от базовых принципов квантовой механики до сложных алгоритмов вроде квантового метода опорных векторов и квантовых нейросетей.

В репозитории также представлены разделы с практическими реализациями — исходные коды алгоритмов, инструменты вроде Qiskit и Cirq, а также свежие исследования в области квантового компьютерного зрения. Для новичков есть объяснения на пальцах: чем кубит отличается от бита и как работает квантовая запутанность.

🤖 GitHub

@machinelearning_interview
👍72🔥2👀2🐳1👨‍💻1
🧠 Андрей Карпаты выпустил интересный пост о масштабировании RL.

Все говорят о масштабировании RL — и не зря. Но ощущение, что это только часть большой картины.

Вчера обсуждали с другом: Reinforcement Learning даёт более масштабируемую обратную связь, чем SFT, и это действительно мощный рычаг. Вместо явных меток — просто: "получилось хорошо → усилим действия", "плохо → ослабим". Но...

🔸 Проблема №1 — асимптотика
Как только задача выходит за пределы секунд и становится минутами/часами взаимодействий, RL сводится к тому, что ты делаешь тонну действий, чтобы в конце получить одну скалярную метку — и по ней обновить весь градиент? Это кажется неэффективным.

🔸 Проблема №2 — не по-человечески
Мы (люди) улучшаемся не только по результату "успех/провал". Мы рефлексируем:
- Что сработало?
- Что нет?
- Что стоит попробовать в следующий раз?

Этот "урок" мы потом либо держим в голове, либо записываем. Он становится частью интуиции или инструкции. В языке это называют *second nature*.
И таких механизмов в обучении ИИ пока нет.

🔍 Пример алгоритма:
1. Несколько rollout'ов
2. Все примеры + награды → в один контекст
3. Промпт на рефлексию: *"Что сработало? Что улучшить?"*
4. Сгенерированная строка → системный промпт или база "уроков"

Это и есть lesson-инъекция. Например, в Claude было явно прописано:
> "Если тебя просят посчитать буквы — раздели по запятым и считай по одному"

Это патч-урок, не выученный, а вручную внедрённый. Вопрос: как заставить агента учить такие уроки сам? И — как потом их дистиллировать, чтобы не раздувать контекст?

🧭 TLDR:
- RL будет давать приросты — оно более “горькое”, но и более leverage‑friendly, чем SFT
- Но это не вся история
- Реальные "S-кривые" могут скрываться в новых парадигмах обучения, которые специфичны для LLM и не похожи на Atari или роботов
- Возможно, "рефлексия → урок → встроенная привычка" — это один из недостающих слоёв в современных системах

#AI #RL #LLM #agenticlearning #meta #reinforcementlearning

@machinelearning_interview
👍43🔥1🤪1