🚀 Вышли модели Qwen3 в формате MLX!
Теперь можно запускать Qwen3 локально — быстро, эффективно и с разной точностью:
- 4-bit
- 6-bit
- 8-bit
- BF16
🔧 Модели специально оптимизированы под MLX framework — минимальный объём, максимальная производительность, полная совместимость с Apple Silicon.
🧪 Идеально подходит для локального inference и интеграции в MLX‑проекты.
📦 Попробовать:
• Hugging Face: huggingface.co/collections/Qwen/qwen3-67dd247413f0e2e4f653967f
• ModelScope: modelscope.cn/collections/Qwen3-9743180bdc6b48
@machinelearning_interview
#Qwen3 #MLX #LLM #AppleSilicon #AI
Теперь можно запускать Qwen3 локально — быстро, эффективно и с разной точностью:
- 4-bit
- 6-bit
- 8-bit
- BF16
🔧 Модели специально оптимизированы под MLX framework — минимальный объём, максимальная производительность, полная совместимость с Apple Silicon.
🧪 Идеально подходит для локального inference и интеграции в MLX‑проекты.
📦 Попробовать:
• Hugging Face: huggingface.co/collections/Qwen/qwen3-67dd247413f0e2e4f653967f
• ModelScope: modelscope.cn/collections/Qwen3-9743180bdc6b48
@machinelearning_interview
#Qwen3 #MLX #LLM #AppleSilicon #AI
❤10👍5🔥4
Forwarded from Machinelearning
MiniMax-M1 — первая в мире open-weight гибридная reasoning‑LLM c 1M контекстом (8× DeepSeek R1) и гибридной архитектурой MoE + lightning attention.
• 456 млрд параметров (45,9 млрд активируются на токен), сверхэффективная генерация — 25% FLOPs DeepSeek R1 на 100K токенов
• Обучение через RL с новым алгоритмом CISPO, решающим реальные задачи от математики до кодинга
• На обучение было потрачено $534K, две версии — 40K/80K “thinking budget”
• Обходит DeepSeek R1 и Qwen3-235B на бенчмарках по математике и кодингу,
• Топ результат на задачах для software engineering и reasoning
Бенчмарки:
AIME 2024: 86.0 (M1-80K) vs 85.7 (Qwen3) vs 79.8 (DeepSeek R1)
SWE-bench Verified: 56.0 vs 34.4 (Qwen3)
OpenAI-MRCR (128k): 73.4 vs 27.7 (Qwen3)
TAU-bench (airline): 62.0 vs 34.7 (Qwen3)
LongBench-v2: 61.5 vs 50.1 (Qwen3)
▪Hugging Face: https://huggingface.co/collections/MiniMaxAI/minimax-m1-68502ad9634ec0eeac8cf094
▪GitHub: https://github.com/MiniMax-AI/MiniMax-M1
▪Tech Report: https://github.com/MiniMax-AI/MiniMax-M1/blob/main/MiniMax_M1_tech_report.pdf
@ai_machinelearning_big_data
#llm #reasoningmodels #minimaxm1
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤8🔥4👍2
Forwarded from Machinelearning
Goodfire AI, вдохновившись примером Anthropic в интерпретации внутренних процессов Claude, воспроизвели методы трассировки цепей межслойных транскодеров (Cross-Layer Transcoders, CLT) на GPT-2 Small, чтобы проверить их способность раскрывать известные механизмы трансформеров.
Выбор на GPT-2 Small пал не случайно, эта модель небольшая и уже была ранее подвергнута ручному реверс-инжинирингу.
Cross-Layer Transcoders выжимают из модели разреженные признаки, которые объясняют работу MLP-слоев. Визуализируют это через графы атрибуции — это карты влияния признака на выход модели.
Натренировали на 100M токенов из FineWeb, получили ~590K признаков. Точность CLT-реплики модели составила 59%, что близко к оригинальным статьям. Тестировали на задаче сравнения чисел («больше, чем»), идеальном полигоне, где уже известны ключевые механизмы.
Задача "Больше, чем" (ориг. "greater-than") взята из статьи Michael Hanna, она заставляет предсказывать большие числа для второго года в диапазоне дат.
Промпт «The war lasted from the year 1711 to 17». CLT построил граф, где признаки с токена «11» (последняя цифра года) активнее всего влияли на предсказание.
Дальше, выделили топ-160 признаков, для каждого построили логит-атрибуции — теплокарты, показывающие, как признак влияет на выходные годы (ZZ) при разных входных (YY).
Похоже, CLT подсветил кучу узкоспециализированных «сравнивателей», а не универсальные нейроны, как в ручных исследованиях.
CLT автоматически находит интерпретируемые признаки, даже такие неочевидные, как абстрактная четность. Но их «разреженный» мир выглядит иначе, чем ручная трассировка цепей: тут больше узких признаков-«спецов» (Feature 461858 для диапазона 10–30) и меньше универсальных механизмов.
Возможно, дело в методе: CLT смотрит изолированные вклады фич, а в полной модели они взаимодействуют.
В общем, эксперименты с CLT показал, что под капотом языковых моделей не только четкие «сравниватели чисел», но и куча скрытых паттернов вроде детекторов контраста или любителей чисел, кратных 5. И да, полуавтономный анализ иногда видит то, что люди упускают.
@ai_machinelearning_big_data
#AI #ML #LLM #Research #CLT
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤8🔥4🥰1🤔1
Forwarded from Machinelearning
Исследователи из из Гонконгского университета и инженеры Alibaba научили LLM генерировать семантически разные ответы, заставляя их «думать» в ортогональных направлениях.
Наверняка каждый, кто работает с LLM, сталкивался с их любовью к самоповторам. Запрашиваешь несколько вариантов решения, а получаешь одну и ту же мысль, просто перефразированную.
Стандартные подходы к декодированию,
temperature sampling
или diverse beam search
, создают лишь лексическое разнообразие, но пасуют, когда требуется семантическое. Это серьезная проблема для Best-of-N или RLHF. Ведь без по-настоящему разных идей и подходов к решению задачи эти методы теряют свою силу: выбирать лучший вариант не из чего, а обучать модель на однотипных примерах неэффективно.Решение предложили в методе SemDiD (Semantic-guided Diverse Decoding). Его суть, если кратко, перестать играть с токенами на поверхности и начать управлять генерацией напрямую в пространстве эмбеддингов.
Сначала, на старте, он принудительно направляет разные группы beams по ортогональным векторам в семантическом пространстве. Грубо говоря, это как дать команду разным поисковым группам двигаться строго на север, юг и запад, чтобы они гарантированно разошлись.
По мере генерации, когда жесткие директивы могут стать неоптимальными, включается второй механизм -
inter-group repulsion
. Он просто следит, чтобы смысловые траектории ответов не сближались, сохраняя их уникальность до самого конца.Но как, гоняясь за разнообразием, не получить на выходе бессвязный бред?
SemDiD подходит к контролю качества уникально. Он не пытается слепо максимизировать вероятность последовательности, а использует ее лишь как нижнюю границу, чтобы отсечь совсем уж плохие варианты.
Кроме того, алгоритм корректирует системные искажения, когда вероятность токенов искусственно завышается в зависимости от их позиции в тексте.
Для баланса между качеством и разнообразием используется адаптивный механизм на основе гармонического среднего, который в каждый момент времени уделяет больше внимания той метрике, которая проседает.
На бенчмарках для Best-of-N, от MMLU-Pro+ до GSM8K, SemDiD увеличивает покрытие (шанс найти верный ответ) на 1.4%-5.2% по сравнению с аналогами.
Генерируя для GRPO или RLOO семантически богатые наборы ответов, SemDiD предоставляет им более качественный материал для обучения. Это ускоряет сходимость на 15% и повышает финальную точность моделей.
@ai_machinelearning_big_data
#AI #ML #LLM #SemDiD
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤10👍7🔥4
🍏 Apple всерьёз задумалась о покупке Mistral — Bloomberg / Марк Гурман
По информации Bloomberg, Apple серьёзно рассматривает покупку французского стартапа Mistral AI, чтобы наконец войти в ИИ-гонку.
Это очень поздний шаг — но он показывает, насколько сильно Apple отстала от OpenAI, Google и даже xAI.
Пока другие выкатывают публичные LLM, мультимодальные ассистенты и интеграции в поиске, Apple остаётся в роли наблюдателя.
📌 Почему это важно:
- Mistral — один из главных open-source игроков на рынке ИИ (выпускают мощные LLM и Mixture of Experts-модели)
- У Apple пока нет ни собственной модели, ни сильной стратегии в области ИИ
- Приобретение Mistral может стать экстренной попыткой догнать конкурентов
Если сделка состоится — это будет крупнейший AI-манёвр Apple за всё время.
#Apple #Mistral #AI #LLM #ГонкаИИ
@machinelearning_interview
По информации Bloomberg, Apple серьёзно рассматривает покупку французского стартапа Mistral AI, чтобы наконец войти в ИИ-гонку.
Это очень поздний шаг — но он показывает, насколько сильно Apple отстала от OpenAI, Google и даже xAI.
Пока другие выкатывают публичные LLM, мультимодальные ассистенты и интеграции в поиске, Apple остаётся в роли наблюдателя.
📌 Почему это важно:
- Mistral — один из главных open-source игроков на рынке ИИ (выпускают мощные LLM и Mixture of Experts-модели)
- У Apple пока нет ни собственной модели, ни сильной стратегии в области ИИ
- Приобретение Mistral может стать экстренной попыткой догнать конкурентов
Если сделка состоится — это будет крупнейший AI-манёвр Apple за всё время.
#Apple #Mistral #AI #LLM #ГонкаИИ
@machinelearning_interview
❤6👍3🔥2
🧠 Андрей Карпаты выпустил интересный пост о масштабировании RL.
Все говорят о масштабировании RL — и не зря. Но ощущение, что это только часть большой картины.
Вчера обсуждали с другом: Reinforcement Learning даёт более масштабируемую обратную связь, чем SFT, и это действительно мощный рычаг. Вместо явных меток — просто: "получилось хорошо → усилим действия", "плохо → ослабим". Но...
🔸 Проблема №1 — асимптотика
Как только задача выходит за пределы секунд и становится минутами/часами взаимодействий, RL сводится к тому, что ты делаешь тонну действий, чтобы в конце получить одну скалярную метку — и по ней обновить весь градиент? Это кажется неэффективным.
🔸 Проблема №2 — не по-человечески
Мы (люди) улучшаемся не только по результату "успех/провал". Мы рефлексируем:
- Что сработало?
- Что нет?
- Что стоит попробовать в следующий раз?
Этот "урок" мы потом либо держим в голове, либо записываем. Он становится частью интуиции или инструкции. В языке это называют *second nature*.
И таких механизмов в обучении ИИ пока нет.
🔍 Пример алгоритма:
1. Несколько rollout'ов
2. Все примеры + награды → в один контекст
3. Промпт на рефлексию: *"Что сработало? Что улучшить?"*
4. Сгенерированная строка → системный промпт или база "уроков"
Это и есть lesson-инъекция. Например, в Claude было явно прописано:
> "Если тебя просят посчитать буквы — раздели по запятым и считай по одному"
Это патч-урок, не выученный, а вручную внедрённый. Вопрос: как заставить агента учить такие уроки сам? И — как потом их дистиллировать, чтобы не раздувать контекст?
🧭 TLDR:
- RL будет давать приросты — оно более “горькое”, но и более leverage‑friendly, чем SFT
- Но это не вся история
- Реальные "S-кривые" могут скрываться в новых парадигмах обучения, которые специфичны для LLM и не похожи на Atari или роботов
- Возможно, "рефлексия → урок → встроенная привычка" — это один из недостающих слоёв в современных системах
#AI #RL #LLM #agenticlearning #meta #reinforcementlearning
@machinelearning_interview
Все говорят о масштабировании RL — и не зря. Но ощущение, что это только часть большой картины.
Вчера обсуждали с другом: Reinforcement Learning даёт более масштабируемую обратную связь, чем SFT, и это действительно мощный рычаг. Вместо явных меток — просто: "получилось хорошо → усилим действия", "плохо → ослабим". Но...
🔸 Проблема №1 — асимптотика
Как только задача выходит за пределы секунд и становится минутами/часами взаимодействий, RL сводится к тому, что ты делаешь тонну действий, чтобы в конце получить одну скалярную метку — и по ней обновить весь градиент? Это кажется неэффективным.
🔸 Проблема №2 — не по-человечески
Мы (люди) улучшаемся не только по результату "успех/провал". Мы рефлексируем:
- Что сработало?
- Что нет?
- Что стоит попробовать в следующий раз?
Этот "урок" мы потом либо держим в голове, либо записываем. Он становится частью интуиции или инструкции. В языке это называют *second nature*.
И таких механизмов в обучении ИИ пока нет.
🔍 Пример алгоритма:
1. Несколько rollout'ов
2. Все примеры + награды → в один контекст
3. Промпт на рефлексию: *"Что сработало? Что улучшить?"*
4. Сгенерированная строка → системный промпт или база "уроков"
Это и есть lesson-инъекция. Например, в Claude было явно прописано:
> "Если тебя просят посчитать буквы — раздели по запятым и считай по одному"
Это патч-урок, не выученный, а вручную внедрённый. Вопрос: как заставить агента учить такие уроки сам? И — как потом их дистиллировать, чтобы не раздувать контекст?
🧭 TLDR:
- RL будет давать приросты — оно более “горькое”, но и более leverage‑friendly, чем SFT
- Но это не вся история
- Реальные "S-кривые" могут скрываться в новых парадигмах обучения, которые специфичны для LLM и не похожи на Atari или роботов
- Возможно, "рефлексия → урок → встроенная привычка" — это один из недостающих слоёв в современных системах
#AI #RL #LLM #agenticlearning #meta #reinforcementlearning
@machinelearning_interview
👍17❤11🔥4🍓3🤪1
🎓 Новые лекции от UCLA: *Reinforcement Learning of Large Language Models* (весна 2025)
Свежий курс, полностью посвящённый обучению LLM с помощью RL. Отличный ресурс для тех, кто хочет разобраться не только в RLHF, но и в новых направлениях, которые появляются на стыке обучения с подкреплением и больших языковых моделей.
📚 Что в курсе:
– Базовые принципы RL применительно к LLM
– RLHF (reinforcement learning from human feedback)
– RL с верифицируемыми наградами (RLVR)
– RL на этапе inference: оптимизация в момент выполнения
– Архитектуры, policy shaping, reward modeling и др.
Это не просто обзор — это системная попытка осмыслить будущее RL для LLM, где важно не только fine-tuning, но и работа с обратной связью в режиме реального времени, доверие к награде и оптимизация вычислений.
🧠 Полезно всем, кто:
– интересуется агентами и автономными системами
– работает над LLM‑продуктами
– хочет выйти за пределы SFT и попробовать более «горькие» методы обучения
#LLM #RLHF #RLVR #AIeducation #ReinforcementLearning #UCLA
🔜 Youtube: https://youtube.com/playlist?list=PLir0BWtR5vRp5dqaouyMU-oTSzaU5LK9r
🔜 Курс: https://ernestryu.com/courses/RL-LLM.html
Свежий курс, полностью посвящённый обучению LLM с помощью RL. Отличный ресурс для тех, кто хочет разобраться не только в RLHF, но и в новых направлениях, которые появляются на стыке обучения с подкреплением и больших языковых моделей.
📚 Что в курсе:
– Базовые принципы RL применительно к LLM
– RLHF (reinforcement learning from human feedback)
– RL с верифицируемыми наградами (RLVR)
– RL на этапе inference: оптимизация в момент выполнения
– Архитектуры, policy shaping, reward modeling и др.
Это не просто обзор — это системная попытка осмыслить будущее RL для LLM, где важно не только fine-tuning, но и работа с обратной связью в режиме реального времени, доверие к награде и оптимизация вычислений.
🧠 Полезно всем, кто:
– интересуется агентами и автономными системами
– работает над LLM‑продуктами
– хочет выйти за пределы SFT и попробовать более «горькие» методы обучения
#LLM #RLHF #RLVR #AIeducation #ReinforcementLearning #UCLA
Please open Telegram to view this post
VIEW IN TELEGRAM
👍33🔥15❤13💯7