Machine learning Interview
24.8K subscribers
1.08K photos
79 videos
12 files
735 links
Разбираем вопросы с собеседований по Machine Learning, Data Science, Deep Learning и Нейронным сетям, Python.

Вопросы - @notxxx1


@itchannels_telegram -🔥лучшие it каналы

РКН: clck.ru/3FmwRz
Download Telegram
👣 Большая актуальная базу бесплатных API, которая обновляется ежедневно. Алгоритмы присваивают рейтинг каждому API на основе надежности, частоты ошибок и времени отклика.

Если API перестает работать или становится платным, он теряет рейтинг и удаляется с сайта. Это полезный ресурс для студентов и разработчиков, которые ищут доступные и рабочие API.

https://www.freepublicapis.com/

@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥14👍52
🌟 Вышла бета-версия генеративной нейросети YandexART (Vi), способная создавать более реалистичные короткие видео

На Хабр вышла статья, описывающая процесс обучения YandexART до версии (Vi), которая создаёт качественные видео с движущимися объектами — например, с едущим автомобилем или крадущимся котом. Дело в том, что обновлённая нейросеть учитывает связь между кадрами — благодаря этому видео получаются более цельными и плавными.

В прошлых версиях модель позволяла получать анимации, которые выглядели так, будто двигалась камера, но не сам объект. Кроме того, от кадра к кадру объекты при генерации значительно менялись, однако в новой версии проблема была устранена.

📎 Статья

@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
8🔥3👍2
⚡️ The Tensor Cookbook: Свежий Гайд по тензорам

Эта компактная книга на 50 страниц даёт полное представление обо всём, что связано с тензорами.

Тензор — это обобщённое понятие для матриц с любым количеством измерений. Тензорами являются скаляры (тензоры нулевого ранга), векторы (тензоры первого ранга) и матрицы (тензоры второго ранга).

В книге также присутствует немало математики, которая поможет глубже понять работу с тензорами.

📚 Книга

@machinelearning_interview
👍203❤‍🔥3🔥31
💻 Свежайщая Бесплатня книга "Introduction to Machine Learning"

Внутри множество важных тем. - оптимизация с серьёзными математическими выкладками,
- разборах метода главных компонент (PCA) с детальным анализом.

Так же внутри основные темы, такие как линейные модели и деревья решений, также освещены. Это отличное пособие для тех, кто хочет изучить как основы, так и более сложные аспекты машинного обучения.

📚 Книга
Please open Telegram to view this post
VIEW IN TELEGRAM
👍17🔥63
🌟 repo2vec: простая библиотека, позволяющая общаться с публичным или частным репозиторием.

Иногда просто нужно узнать, как работает код и как его интегрировать, не тратя часы на изучение самого кода. Repo2vec - это как GitHub Copilot, но с самой актуальной информацией о целевом репозитории.

Возможности:

🟢 Простая настройка: запустите пару скриптов и у вас будет функциональный интерфейс чата для вашего кода;

🟢Документированные ответы: каждый ответ показывает, откуда в коде был извлечен контекст для ответа;

🟢Работает локально или в облаке: вы можете использовать Marqo для эмбеддинга + векторного хранилища и Ollama для чата с LLM или настроить эмбеддинги OpenAI + Pinecone для векторного хранилища + OpenAI или Anthropic для чата LLM;

🟢 Plug-and-play: каждый компонент конвейера легко заменяем. Инженерные стандарты уровня Google позволяют вам настраивать все по своему усмотрению;

🟢Индексация Issues (опционально): вы можете дополнительно индексировать issues, установив ключ --index-issues. И наоборот, вы можете отключить индексирование кода (и индексировать только issues), ключом --no-index-repo.

Помимо self-hosted варианта для приватных репозиториев, repo2vec существует в виде бесплатного онлайн-сервиса индексации публичных репозиториев Github - Code Sage.

▶️Установка на примере Marqo, Ollama и чатом в GradioUI:

# Install the library
pip install repo2vec

# Install Marqo instance using Docker:
docker rm -f marqo
docker pull marqoai/marqo:latest
docker run --name marqo -it -p 8882:8882 marqoai/marqo:latest

# Run index your codebase:
index github-repo-name
--embedder-type=marqo
--vector-store-type=marqo
--index-name=your-index-name

# Сhat with a local LLM via Ollama

# Start Gradio:
chat github-repo-name
--llm-provider=ollama
--llm-model=llama3.1
--vector-store-type=marqo
--index-name=your-index-name


📌Лицензирование : Apache 2.0 License.


🖥Github

@ai_machinelearning_big_data

#AI #ML #LLM #RAG #repo2vec
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍113🔥2
Давайте проверим ваши знания работы бинарного дерева поиска. Посмотрите на изображение и ответьте на вопрос ниже.

#викторина #bst
👍62🔥2
This media is not supported in your browser
VIEW IN TELEGRAM
🌲 Supertree — инструмент для создания интерактивных визуализаций деревьев решений:

- Работает с Jupyter Notebooks, Jupyter Lab, Google Colab и другими средами, поддерживающими рендеринг HTML.

- Поддерживает возможность масштабирования дерева (зум).

- Позволяет разворачивать и сворачивать выбранные узлы для более удобного анализа.

https://github.com/mljar/supertree

@machinelearning_interview
👍13🔥93
📚 Справочник-шпаргалка по методологиям и паттернам на Python

Это обширный гайд на «Хабре», который расскажет о:

паттернах (порождающих, структурных, поведенческих);
разработке через тестирование (TDD);
разработке, основанной на описании поведения (BDD);
предметно-ориентированном проектировании (DDD).

🔗 Ссылка

@machinelearning_interview
👍114🔥3❤‍🔥1👎1
Forwarded from Machinelearning
✔️ Книга+практика : Understanding Deep Learning

Книга “Understanding Deep Learning” посвящена идеям и принципам, лежащим в основе глубокого обучения. Подача материала построена таким образом, чтобы читатель мог понять материал настолько эффективно, насколько это возможно. Для читателей, желающих углубиться в изучение, в каждой главе приведены соответствующие задачи, записные книжки по Python и подробные справочные материалы.

В первой части книги представлены модели глубокого обучения и обсуждается, как их обучать, измерять их производительность и улучшать эту производительность.

В следующей части рассматриваются архитектуры, которые специализируются на изображениях, тексте и графических данных. Для свободного понимания этих двух глав требуется понимать принципы линейной алгебры, матанализа и теории вероятностей.

Последующие части книги посвящены генеративным моделям и методике обучения с подкреплением. Эти главы требуют больших знаний в области теории вероятностей и математического анализа.

В последней главе обсуждается этика искусственного интеллекта и призыв к практикующим инженерам задуматься о моральных последствиях своей работы.

Автор книги: Simon J. D. Prince - почетный профессор информатики в Университете Bath (Великобритания) , со-автор более 80 опубликованных исследований в области ML.
Научный сотрудник, специализирующийся на искусственном интеллекте и глубоком обучении, он руководил группами ресерча в Anthropics Technologies Ltd, Borealis AI и других компаниях.

Дополнительно, на отдельном сайте книги, читателям доступны:

🟢ответы на наиболее частые вопросы студентов;
🟢ipynb - ноутбуки для практических занятий по материалам книги;
🟢интерактивные иллюстрации по темам;
🟢презентации по каждой главе для преподавателей, которые захотят построить свое обучение на содержимом книги;
🟢большой список статей по 12 направлениям для продолжения обучения после прочтения книги: AI Theory, Transformers & LLMs, Unsupervised learning, Natural language processing, Computer vision и др.

▶️Дата последней актуализации книги : 28 августа 2024 года.


📌Стоимость: бесплатно


🟡Сайт книги
🖥Github


@ai_machinelearning_big_data

#AI #ML #Book
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
26🔥103👎1
🌟 Google представила инструмент для преобразования любой научной статьи в подкаст.

Illuminate – это сервис text-to-audio, который позволяет быстро ознакомиться с содержанием научных статей.

Сейчас инструмент доступен только по запросу – необходимо встать в очередь ожидания. Однако на сайте Illuminate уже есть подкасты по известным научным статьям в области искусственного интеллекта:

🎧 Attention is All You Need
🎧 Chain-of-Thought Prompting Elicits Reasoning in Large Language Models
🎧 On Limitations of the Transformer Architecture
🎧 MLP-Mixer: An all-MLP Architecture for Vision

https://illuminate.google.com/home

@machinelearning_interview
👍116🔥1
🛠 Какова роль у небольших моделей в эпоху LLM: Интересный Обзор

В этой работе рассматриваются взаимоотношения между LLM и малыми моделями, анализируется их потенциал в использовании вместе с большими моделями и иъ конкурентные преимущества.

📝https://arxiv.org/abs/2409.06857
👨🏽‍💻https://github.com/tigerchen52/role_of_small_models

@machinelearning_interview
8👍1🔥1